精英家教网 > 高中数学 > 题目详情
15.如图,在矩形ABCD中,AB=12,BC=5,以A、B为焦点的双曲线$M:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$恰好过C、D两点,则双曲线M的标准方程为$\frac{x^2}{16}-\frac{y^2}{20}=1$.

分析 根据题意,求出A、B、C、D四点的坐标,分析可得c=6,由双曲线的定义可得2a=||AC|-|CB||=13-5=8,即a=4,由双曲线的性质可得b的值,将a、b的值代入双曲线方程即可得答案.

解答 解:根据题意,分析可得A:(-6,0),B(6,0),D(-6,5),C(6,5),则|AC|=$\sqrt{1{2}^{2}+{5}^{2}}$=13,
若双曲线的焦点为A、B,则c=6,
又由双曲线恰好过C、D两点,则2a=||AC|-|CB||=13-5=8,即a=4,
又由c=6,则b2=a2-c2=20;
则双曲线的方程为:$\frac{x^2}{16}-\frac{y^2}{20}=1$;
故答案为:$\frac{x^2}{16}-\frac{y^2}{20}=1$.

点评 本题考查双曲线的几何性质,关键是掌握双曲线的定义,分析得到a、c的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.下列说法中正确的是(  )
A.一个命题的逆命题为真,则它的逆否命题一定为真
B.若“ac2>bc2”,则a>b
C.?x0∈R,$sin{x_0}+cos{x_0}=\frac{3}{2}$
D.“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若a>0,b>0,则称$\frac{2ab}{a+b}$为a,b的调和平均数.如图,点C为线段AB上的点,且AC=a,BC=b,点O为线段AB中点,以AB为直径做半圆,过点C作AB的垂线交半圆于D,连结OD,AD,BD.过点C作OD的垂线,垂足为E,则图中线段OD的长度是a,b的算术平均数,那么图中表示a,b的几何平均数与调和平均数的线段,以及由此得到的不等关系分别是(  )
A.$CD,CE,\frac{2ab}{a+b}≥\sqrt{ab}$B.$CD,DE,\frac{2ab}{a+b}≤\sqrt{ab}$C.$CD,CE,\frac{2ab}{a+b}≥\sqrt{ab}$D.$CD,CE,\frac{2ab}{a+b}≤\sqrt{ab}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列说法正确的是(  )
A.命题“若x2=9,则x=±3”的否命题为“若x2=9,则x≠±3”
B.若命题P:?x0∈R,$x_0^2-3{x_0}-1>0$,则命题?P:?x∈R,$x_{\;}^2-3x-1<0$
C.设$\overrightarrow a,\overrightarrow b$是两个非零向量,则“$\overrightarrow a•\overrightarrow b<0$是“$\overrightarrow a,\overrightarrow b$夹角为钝角”的必要不充分条件
D.若命题P:$\frac{1}{x-2}>0$,则¬P:$\frac{1}{x-2}≤0$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知平面α∩平面β=直线a,直线b?α,直线c?β,b∩a=A,c∥a.求证:b与c是异面直线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如果存在常数a,使得数列{an}满足:若x是数列{an}中的一项,则a-x也是数列{an}中的一项,称数列{an}为“兑换数列”,常数a是它的“兑换系数”.
(1)若数列:2,3,6,m(m>6)是“兑换系数”为a的“兑换数列”,求m和a的值;
(2)已知有穷等差数列{bn}的项数是n0(n0≥3),所有项之和是B,求证:数列{bn}是“兑换数列”,并用n0和B表示它的“兑换系数”;
(3)对于一个不少于3项,且各项皆为正整数的递增数列{cn},是否有可能它既是等比数列,又是“兑换数列”?给出你的结论,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=(sinx+cosx)2+cos2x.
( I)求f(x)的最小正周期;
( II)求f(x)在区间$[0,\frac{π}{2}]$上的最大值和最小值及相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知x,y满足$\left\{\begin{array}{l}{2x-y≤0}\\{3x+y-3≤0}\\{x≥0}\end{array}\right.$,则z=y-3x的最小值为$-\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为矩形,AB=2BC,E是CD上一点,若AE⊥平面PBD,则$\frac{CE}{ED}$的值为(  )
A.$\frac{3}{2}$B.$\frac{5}{2}$C.3D.4

查看答案和解析>>

同步练习册答案