精英家教网 > 高中数学 > 题目详情
5.在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为矩形,AB=2BC,E是CD上一点,若AE⊥平面PBD,则$\frac{CE}{ED}$的值为(  )
A.$\frac{3}{2}$B.$\frac{5}{2}$C.3D.4

分析 推导出PD⊥AE,当AE⊥BD时,AE⊥平面PBD,此时△ABD∽△DAE,由此能求出$\frac{CE}{ED}$的值.

解答 解:∵PD⊥底面ABCD,∴PD⊥AE,
当AE⊥BD时,AE⊥平面PBD,此时△ABD∽△DAE,
则$\frac{AB}{AD}=\frac{AD}{DE}$,
∵AB=2BC,∴DE=$\frac{1}{4}AB$=$\frac{1}{4}$CD,
∴$\frac{CE}{ED}$=3.
故选:C.

点评 本题考查两线段长的比值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.如图,在矩形ABCD中,AB=12,BC=5,以A、B为焦点的双曲线$M:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$恰好过C、D两点,则双曲线M的标准方程为$\frac{x^2}{16}-\frac{y^2}{20}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在区间[0,1]上任取两个实数a,b,则函数f(x)=$\frac{1}{3}$x2+ax-b在区间[-1,1]上有且仅有一个零点的概率为$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知离心率为$\frac{\sqrt{2}}{2}$的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点P(-1,$\frac{\sqrt{2}}{2}$).
(1)求椭圆C的方程;
(2)直线AB:y=k(x+1)交椭圆C于A、B两点,交直线l:x=m于点M,设直线PA、PB、PM的斜率依次为k1、k2、k3,问是否存在实数t,使得k1+k2=tk3?若存在,求出实数t的值以及直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若定义在R上的函数f(x)满足:(Ⅰ)f(x1+x2)=f(x1)•f(x2),(Ⅱ)?x1<x2,f(x1)>f(x2),则满足以上条件的一个函数解析式为y=($\frac{1}{3}$)x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设命题p:?x0∈(0,+∞),lnx0=-1.命题q:若m>1,则椭圆$\frac{{x}^{2}}{m}$+y2=1的焦距为2$\sqrt{m-1}$,那么,下列命题为真命题的是(  )
A.¬qB.(¬p)∨(¬q)C.p∧qD.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数φ(x)=lnx-ax(a∈R).
(1)讨论φ(x)的单调性;
(2)设f(x)=φ(x)-$\frac{1}{2}$x3,当x>0时,f(x)<0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.用数学归纳方法证明:22+42+62+…+(2n)2=$\frac{2}{3}$n(n+1)(2n+1)(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.计算:$\frac{\sqrt{3}sin20°+sin70°}{\sqrt{2-2cos100°}}$=1.

查看答案和解析>>

同步练习册答案