精英家教网 > 高中数学 > 题目详情

如图,已知双曲线C1,曲线C2:|y|=|x|+1,P是平面内一点,若存在过点P的直线与C1,C2都有公共点,则称P为“C1﹣C2型点“

(1)在正确证明C1的左焦点是“C1﹣C2型点“时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1﹣C2型点”;
(3)求证:圆x2+y2=内的点都不是“C1﹣C2型点”

(1),其中(2)见解析(3)见解析

解析试题分析:C1的左焦点为(),写出的直线方程可以是以下形式:
,其中
(2)证明:因为直线y=kx与C2有公共点,
所以方程组有实数解,因此|kx|=|x|+1,得
若原点是“C1﹣C2型点”,则存在过原点的直线与C1、C2都有公共点.
考虑过原点与C2有公共点的直线x=0或y=kx(|k|>1).
显然直线x=0与C1无公共点.
如果直线为y=kx(|k|>1),则由方程组,得,矛盾.
所以直线y=kx(|k|>1)与C1也无公共点.
因此原点不是“C1﹣C2型点”.
(3)证明:记圆O:,取圆O内的一点Q,设有经过Q的直线l与C1,C2都有公共点,显然l不与x轴垂直,
故可设l:y=kx+b.
若|k|≤1,由于圆O夹在两组平行线y=x±1与y=﹣x±1之间,因此圆O也夹在直线y=kx±1与y=﹣kx±1之间,
从而过Q且以k为斜率的直线l与C2无公共点,矛盾,所以|k|>1.
因为l与C1由公共点,所以方程组有实数解,
得(1﹣2k2)x2﹣4kbx﹣2b2﹣2=0.
因为|k|>1,所以1﹣2k2≠0,
因此△=(4kb)2﹣4(1﹣2k2)(﹣2b2﹣2)=8(b2+1﹣2k2)≥0,
即b2≥2k2﹣1.
因为圆O的圆心(0,0)到直线l的距离
所以,从而,得k2<1,与|k|>1矛盾.
因此,圆内的点不是“C1﹣C2型点”
考点:直线与圆锥曲线的关系;点到直线的距离公式;双曲线的简单性质
点评:本题考查了双曲线的简单几何性质,考查了点到直线的距离公式,考查了直线与圆锥曲线的关系,直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法.属难题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

双曲线的焦点在x轴上,实轴长为4,离心率为3,则该双曲线的标准方程为       ,渐近线方程为        

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在平面直角坐标系中,动点到两条坐标轴的距离之和等于它到点的距离,记点的轨迹为曲线.
(I) 给出下列三个结论:
①曲线关于原点对称;
②曲线关于直线对称;
③曲线轴非负半轴,轴非负半轴围成的封闭图形的面积小于
其中,所有正确结论的序号是_____;
(Ⅱ)曲线上的点到原点距离的最小值为______.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知抛物线的准线过双曲线的右焦点,则双曲线的离心率为     .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知实数a>0,b>0,点A、B分别是曲线)与曲线)上任意两点,则||最小值为          .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知是椭圆和双曲线的公共顶
点。是双曲线上的动点,是椭圆上的动点(都异于),且满足,其中,设直线的斜率 分别记为, ,则        

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

椭圆的焦点为,点在椭圆上,且线段的中点恰好在轴上,,则            .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

直线与双曲线C:交于两点,是线段的中 点,若是原点)的斜率的乘积等于,则此双曲线的离心率为        ___

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在平面直角坐标系中,椭圆的标准方程为,右焦点为,右准线为,短轴的一个端点. 设原点到直线的距离为点到的距离为. 若,则椭圆的离心率为    

查看答案和解析>>

同步练习册答案