分析 (1)根据题意,设“在A、B两个定点套圈一次套中”为事件A,B,则P(A)=$\frac{1}{2}$,P(B)=$\frac{1}{3}$.小孩甲套圈三次,得分X的可能值是0、2、3、4、5、7;利用相互独立事件的概率计算公式可得概率,进而得到分布列、数学期望;
(2)利用互斥事件概率计算公式即可得出.
解答 解:(1)根据题意,设“在A、B两个定点套圈一次套中”为事件A,B,则P(A)=$\frac{1}{2}$,P(B)=$\frac{1}{3}$.
小孩甲套圈三次,得分X的可能值是0、2、3、4、5、7;
当X=0时,P(X=0)=$\frac{1}{2}$×$\frac{1}{2}$×(1-$\frac{1}{3}$)=$\frac{2}{12}$,
当X=2时,P(X=2)=$\frac{1}{2}$×(1-$\frac{1}{2}$)×(1-$\frac{1}{3}$)×2=$\frac{4}{12}$,
当X=3时,P(X=3)=(1-$\frac{1}{2}$)×(1-$\frac{1}{2}$)×$\frac{1}{3}$=$\frac{1}{12}$,
当X=4时,P(X=4)=$\frac{1}{2}$×$\frac{1}{2}$×(1-$\frac{1}{3}$)=$\frac{2}{12}$,
当X=5时,P(X=5)=$\frac{1}{2}$×(1-$\frac{1}{2}$)×$\frac{1}{3}$×2=$\frac{2}{12}$,
当X=7时,P(X=7)=$\frac{1}{2}$×$\frac{1}{2}$×$\frac{1}{3}$=$\frac{1}{12}$;
∴X的分布列为;
| X | 0 | 2 | 3 | 4 | 5 | 7 |
| P(X) | $\frac{2}{12}$ | $\frac{4}{12}$ | $\frac{1}{12}$ | $\frac{2}{12}$ | $\frac{2}{12}$ | $\frac{1}{12}$ |
点评 本题考查了相互独立事件、互斥事件的概率计算公式、随机变量的分布列、数学期望,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com