精英家教网 > 高中数学 > 题目详情

已知向量,函数的图象与直线的相邻两个交点之间的距离为
(Ⅰ)求的值;
(Ⅱ)求函数上的单调递增区间.

(Ⅰ);(Ⅱ)的单调增区间为.

解析试题分析:(Ⅰ)先由向量数量积坐标运算得,再由图象与直线的相邻两个交点之间的距离为,从而求得;(Ⅱ)由,再由余弦函数的单调性可得的单调增区间为.
试题解析:(Ⅰ)   1分

    5分
由题意,   6分
(Ⅱ)时,
时,单调递增   9分
的单调增区间为   12分
考点:1.向量的数量积;2.三角恒等变换;3.三角函数的单调性

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其图象上相邻两条对称轴之间的距离为,且过点
(Ⅰ)求的值;
(Ⅱ)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边为,且满足
(Ⅰ)求角的值;
(Ⅱ)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数的部分图象如下图所示,将的图象向右平移个单位后得到函数的图象.

(1)求函数的解析式;
(2)若的三边为成单调递增等差数列,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求的值;
(2)若是第三象限的角,化简三角式,并求值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,设函数的图象关于直线对称,其中常数
(Ⅰ)求的最小正周期;
(Ⅱ)将函数的图像向左平移个单位,得到函数的图像,用五点法作出函数在区间的图像.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(l)求函数的最小正周期;
(2)求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的单调递增区间;
(2)在中,内角A,B,C的对边分别为,已知成等差数列,且,求边的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,扇形AOB,圆心角AOB的大小等于,半径为2,在半径OA上有一动点C,过点C作平行于OB的直线交弧AB于点P.

(1)若C是半径OA的中点,求线段PC的长;
(2)设,求面积的最大值及此时的值.

查看答案和解析>>

同步练习册答案