精英家教网 > 高中数学 > 题目详情
在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),已知过点P(-2,-4)的直线l的参数方程为
x=-2+t
y=-4+t
,直线l与曲线C分别交于M,N.
(1)写出曲线C和直线l的普通方程;
(2)若|PM|,|MN|,|PN|成等比数列,求a的值.
考点:直线的参数方程
专题:坐标系和参数方程
分析:(1)利用极坐标化为直角坐标方程的公式x=ρcosθ,y=ρsinθ可得曲线C的方程;消去参数t即可得到直线l的方程;
(2)把直线的方程代入抛物线的方程得到根与系数的关系,利用两点间的距离公式和等比数列的定义即可得出.
解答: 解:(1)由曲线C:ρsin2θ=2acosθ(a>0),可得ρ2sin2θ=2aρcosθ,化为y2=2ax.
由直线l的参数方程为
x=-2+t
y=-4+t
,消去参数t可得直线l:y=x-2.
(2)联立
y=x-2
y2=2ax

化为x2-(4+2a)x+4=0,
∵直线l与抛物线相交于两点,
∴△=(4+2a)2-16>0,解得a>0或a<-4.(*)
∴x1+x2=4+2a,x1x2=4.
∴|MN|=
(1+1)[(x1+x2)2-4x1x2]
=
2[(4+2a)2-16]
=
8a2+32a

|PM|=
(x1+2)2+(y1+4)2
=
2
|x1+2|
,|PN|=
2
|x2+2|

∴|PM||PN|=2|(x1+2)(x2+2)|=2|x1x2+2(x1+x2)+4|
=2|16+4a|
∵|PM|,|MN|,|PN|成等比数列,
∴|MN|2=|PM||PN|,
(
8a2+32a
)2
=2|16+4a|,
化为a(4+a)=|4+a|,
∵a>0或a<-4.
解得a=1.
∴a=1.
点评:本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与抛物线相交问题转化为把直线的方程与抛物线的方程联立得到根与系数的关系、两点间的距离公式和等比数列的定义等基础知识与基本技能方法,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,矩形ABEF和正方形ABCD有公共边AB,它们所在平面成60°的二面角,AB=CB=2a,BE=a,则DE=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x||x+1|<1},B={x|y=
(
1
2
)x-2
,y∈R},则A∩∁RB=(  )
A、(-2,1)
B、(-2,-1]
C、(-1,0)
D、[-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

设递增等比数列{an}的前n项和为Sn,且a2=3,S3=13,数列{bn}满足b1=a1,点P(bn,bn+1)在直线x-y+2=0上,n∈N*
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=
bn
an
,数列{cn}的前n项和Tn,若Tn>2a-1恒成立(n∈N*),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四棱锥P-ABCD中,四边形ABCD为菱形,∠ABC=60°,AB=2,△PCB为正三角形,且平面PCB⊥平面ABCD,M,N分别为BC,PD的中点.
(1)求证:MN∥面APB;
(2)求二面角B-NC-P的余弦值;
(3)求四棱锥P-ABCD被截面MNC分成的上下两部分体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角梯形ABCD中,AD∥BC,BC=2AD=2AB=2
2
,∠ABC=90°(如图1).把△ABD沿BD翻折,使得二面角A-BD-C的平面角为θ(如图2)
(1)若θ=
π
2
,求证:CD⊥AB;
(2)是否存在适当θ的值,使得AC⊥BD,若存在,求出θ的值,若不存在说明理由;
(3)若θ=
π
2
,取BD中点M,BC中点N,P、Q分别为线段AB与DN上一点,使得
AP
PB
=
NQ
QD
=λ(λ∈R)
.令PQ与BD和AN所成的角分别为θ1和θ2.求sinθ1+sinθ2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD与BDEf均为菱形,已知∠DAB=∠DBF=60°,且面ABCD⊥面BDEF,AC=2
3

(1)求证:OF⊥平面ABCD;
(2)求二面角F-BC-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ln(x+1) , g(x)=
1
2
ax2+bx (a,b∈R)

(1)若b=2且h(x)=f(x-1)-g(x)存在单调递减区间,求实数a的取值范围;
(2)若a=0,b=1,求证:当x∈(-1,+∞)时,f(x)-g(x)≤0恒成立;
(3)设x>0,y>0,证明:xlnx+ylny>(x+y)ln
x+y
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+
π
6
)(x∈R,A>0,ω>0)的最小正周期为T=6π,且f(2π)=2
(1)求ω和A的值;
(2)设α,β∈[0,
π
2
],f(3α+π)=
16
5
,f(3β+
2
)=-
20
13
,求cos(α-β).

查看答案和解析>>

同步练习册答案