精英家教网 > 高中数学 > 题目详情
如图,矩形ABEF和正方形ABCD有公共边AB,它们所在平面成60°的二面角,AB=CB=2a,BE=a,则DE=
 
考点:与二面角有关的立体几何综合题
专题:空间位置关系与距离
分析:由题意,可连接EC,在三角形EBC中利用余弦定理求出EC的长度,再证明三角形ECD是直角三角形,然后在其中利用勾股定理求得纯然ED的长度
解答: 解:由题意可知,∠FAD=∠EBC=60°,连接EC,
在三角形EBC中,由余弦定理可得EC=
EB2+BC2-2×EB×BC×cos60°

又AB=CB=2a,BE=a
所以EC=
a2+4a2-2×a×2a×cos60°
=
3
a
又矩形ABEF和正方形ABCD可得AB⊥面EBC,即CD⊥面EBC
所以∠ECD为直角
在Rt△ECD中,由勾股定理得ED=
EC2+CD2
=
3a2+4a2
=
7
a
故答案为
7
a
点评:本题考查与二面角有关的立体几何题,余弦定理求长度,立体几何中的长度问题一般在三角形中求解,解三角形的相关知识在此类题中应用较广泛
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)为R上的可导函数,且满足f(x)>f′(x),对任意正实数a,下面不等式恒成立的是(  )
A、f(a)>
f(0)
ea
B、f(a)<
f(0)
ea
C、f(a)>eaf(0)
D、f(a)<eaf(0)

查看答案和解析>>

科目:高中数学 来源: 题型:

进入2013年后全国各地雾霾天气频发,一个重要的诱因是空气中细小颗粒物.我国新引入PM2.5来衡量大气的质量.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国PM2.5标准采用世卫组织设定的最宽限值,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米及其以上空气质量为超标.长沙市环保局从该市市区2013年1月份的PM2.5监测数据中随机抽取7天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).
(Ⅰ)这7天的平均值是否超标?
(Ⅱ)若从这7天的数据中随机抽出2天,求恰有一天空气质量超标的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是根据某赛季甲、乙两名篮球运动员每场比赛得分情况画出的茎叶图.从这个茎叶图可以看出甲、乙两名运动员得分的中位数分别是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站3 人,同一级台阶上的人不区分站的位置,则不同的站法种数是
 
(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a9=
1
2
a12+6
,则数列{an}的前11项和S11等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下三个关于x的不等式:①x2-4x+3<0,②
3
x+1
>1
,③2x2+m2x+m<0.若③的解集非空,且满足③的x至少满足①和②中的一个,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线y2-
x2
m
=1
的离心率e=2,则以双曲线的两条渐近线与抛物线y2=mx的交点为顶点的三角形的面积为(  )
A、
3
B、9
3
C、27
3
D、36
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),已知过点P(-2,-4)的直线l的参数方程为
x=-2+t
y=-4+t
,直线l与曲线C分别交于M,N.
(1)写出曲线C和直线l的普通方程;
(2)若|PM|,|MN|,|PN|成等比数列,求a的值.

查看答案和解析>>

同步练习册答案