精英家教网 > 高中数学 > 题目详情
设递增等比数列{an}的前n项和为Sn,且a2=3,S3=13,数列{bn}满足b1=a1,点P(bn,bn+1)在直线x-y+2=0上,n∈N*
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=
bn
an
,数列{cn}的前n项和Tn,若Tn>2a-1恒成立(n∈N*),求实数a的取值范围.
考点:数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件,利用等比数列的通项公式和前n项和公式求出公比,再由递增等比数列的性质能求出{an}的通项公式;由点P(bn,bn+1)在直线x-y+2=0上,知bn+1-bn=2,由此能求出数列{bn}的通项公式.
(Ⅱ)由cn=
bn
an
=
2n-1
3n-1
,利用错位相减法求出数列{cn}的前n项和Tn,求出Tn的最小值,由此能求出实数a的取值范围,
解答: 解:(Ⅰ)∵递增等比数列{an}的前n项和为Sn,且a2=3,S3=13,
a2=3
S3=a1+a2+a3=13

解得q=3或q=
1
3

∵数列{an}为递增等比数列,所以q=3,a1=1.
∴{an}是首项为1,公比为3的等比数列.
an=3n-1.…(3分)
∵点P(bn,bn+1)在直线x-y+2=0上,
∴bn+1-bn=2.
∴数列{bn}是首项为1,公差为2的等差数列.
∴bn=1+(n-1)•2=2n-1.…(5分)
(Ⅱ)∵cn=
bn
an
=
2n-1
3n-1

Tn=
1
30
+
3
31
+
5
32
+…+
2n-1
3n-1

1
3
Tn=
1
3
+
3
32
+
5
33
+…+
2n-3
3n-1
+
2n-1
3n
,…(7分)
两式相减得:
2
3
Tn=
1
3
+
2
3
+
2
32
+…+
2
3n-1
-
2n-1
3n

=1+2×
1
3
[1-(
1
3
)n-1]
1-
1
3
-
2n-1
3n

=2-(
1
3
n-1-
2n-1
3n
.…(8分)
所以Tn=3-
1
2•3n-2
-
2n-1
2•3n-1
=3-
n+1
3n-1
.…(9分)
Tn+1-Tn=3-
n+2
3n
-3+
n+1
3n-1
=
2n+1
3n
>0
,…(10分)
∴Tn≥T1=1.
若Tn>2a-1恒成立,则1>2a-1,
解得a<1.
∴实数a的取值范围{a|a<1}.…(12分)
点评:本题考查数列的通项公式的求法,是中档题,解题时要认真审题,注意错位相减法和等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图是根据某赛季甲、乙两名篮球运动员每场比赛得分情况画出的茎叶图.从这个茎叶图可以看出甲、乙两名运动员得分的中位数分别是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线y2-
x2
m
=1
的离心率e=2,则以双曲线的两条渐近线与抛物线y2=mx的交点为顶点的三角形的面积为(  )
A、
3
B、9
3
C、27
3
D、36
3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、?x0∈R,ex0≤0
B、对?a>b,则ab=2,(a2+b2min=4
C、a>1,b>1是ab>1的充分条件
D、a+b=0的充要条件是
a
b
=-1

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=x2+
1
x
(x≤-
1
2
)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

请画出如图几何体的三视图.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),已知过点P(-2,-4)的直线l的参数方程为
x=-2+t
y=-4+t
,直线l与曲线C分别交于M,N.
(1)写出曲线C和直线l的普通方程;
(2)若|PM|,|MN|,|PN|成等比数列,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列,且a1=1,b1=2,a2=3,求通项an,bn

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式
3x2+2x+2
x2+x+1
≥m对于任意的实数x均成立,求自然数m的值.

查看答案和解析>>

同步练习册答案