精英家教网 > 高中数学 > 题目详情
若不等式
3x2+2x+2
x2+x+1
≥m对于任意的实数x均成立,求自然数m的值.
考点:函数恒成立问题
专题:综合题,函数的性质及应用
分析:不等式
3x2+2x+2
x2+x+1
≥m对于任意的实数x均成立,等价于(m-3)x2+(m-2)x+m-2≤0对于任意的实数x均成立,分类讨论,利用根的判别式即可求得m的取值范围.
解答: 解:不等式
3x2+2x+2
x2+x+1
≥m对于任意的实数x均成立,等价于(m-3)x2+(m-2)x+m-2≤0对于任意的实数x均成立.
m=3时,x+1≤0,∴x≤-1,不满足题意;
m≠3时,
m-3<0
(m-2)2-4(m-3)(m-2)≤0
,∴m≤2,
∴自然数m的值为0,1,2.
点评:本题考查二次函数在R中的恒成立问题,可以通过判别式法予以解决,也可以分离参数m,分类讨论解决
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设递增等比数列{an}的前n项和为Sn,且a2=3,S3=13,数列{bn}满足b1=a1,点P(bn,bn+1)在直线x-y+2=0上,n∈N*
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=
bn
an
,数列{cn}的前n项和Tn,若Tn>2a-1恒成立(n∈N*),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ln(x+1) , g(x)=
1
2
ax2+bx (a,b∈R)

(1)若b=2且h(x)=f(x-1)-g(x)存在单调递减区间,求实数a的取值范围;
(2)若a=0,b=1,求证:当x∈(-1,+∞)时,f(x)-g(x)≤0恒成立;
(3)设x>0,y>0,证明:xlnx+ylny>(x+y)ln
x+y
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a、b、c∈Z),已知方程f(x)=0在区间(-2,0)内有两个不等的实根,且对任意实数x恒有4x+2≤f(x)≤8x2+12x+4,求a、b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角梯形ABCD中,AD∥BC,BC=2AD=2AB=2
2
,∠ABC=90°(如图1).把△ABD沿BD翻折,使得二面角A-BD-C的平面角为θ(如图2)
(1)若θ=
π
2
,求证:CD⊥AB;
(2)是否存在适当θ的值,使得AC⊥BD,若存在,求出θ的值,若不存在说明理由;
(3)取BD中点M,BC中点N,P、Q分别为线段AB与DN上一点,使得
AP
PB
=
NQ
QD
=λ(λ∈R)
.令PQ与BD和AN所成的角分别为θ1和θ2.求证:对任意θ∈(0.π),总存在实数λ,使得sinθ1+sinθ2均存在一个不变的最大值.并求出此最大值和取得最大值时θ与λ的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
a
x
,g(x)=x2-bx a、b∈R.
(1)若集合{x|f(x)=2x+2}只含有一个元素,试求实数a的值;
(2)在(1)的条件下,当m∈[2,4],n∈[1,5]时有f(m)大于等于g(n)恒成立,试求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+
π
6
)(x∈R,A>0,ω>0)的最小正周期为T=6π,且f(2π)=2
(1)求ω和A的值;
(2)设α,β∈[0,
π
2
],f(3α+π)=
16
5
,f(3β+
2
)=-
20
13
,求cos(α-β).

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线ax-by+1=0平分圆C:x2+y2+2x-4y+1=0的周长,则ab的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)是定义域为R,周期为2的周期函数,且当x∈[-1,1)时,f(x)=1-x2;已知函数g(x)=
lg|x|,x≠0
1,x=0
,则函数f(x)和g(x)的图象在区间[-5,10]内公共点的个数为
 

查看答案和解析>>

同步练习册答案