精英家教网 > 高中数学 > 题目详情
设函数y=f(x)是定义域为R,周期为2的周期函数,且当x∈[-1,1)时,f(x)=1-x2;已知函数g(x)=
lg|x|,x≠0
1,x=0
,则函数f(x)和g(x)的图象在区间[-5,10]内公共点的个数为
 
考点:函数的周期性
专题:函数的性质及应用
分析:根据函数的周期性,作出函数f(x)和g(x)的图象,利用数形结合即可得到两个函数公共点的个数.
解答: 解:∵函数y=f(x)是定义域为R,周期为2的周期函数,且当x∈[-1,1)时,f(x)=1-x2
∴作出函数f(x)的图象如图:
∵g(x)=
lg|x|,x≠0
1,x=0

∴作出函数g(x)的图象如图:
则由图象可知两个图象的交点个数为14个,
故答案为:14
点评:本题主要考查函数图象交点个数的判断,利用函数的周期性以及利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若不等式
3x2+2x+2
x2+x+1
≥m对于任意的实数x均成立,求自然数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

将边长为1的正方形ABCD沿对角线BD折成直二面角,则二面角B-AC-D的余弦值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆锥底面半径为1,高为2,则圆锥的侧面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,a1=1,S5=25,若点P1(1,a3),P2(a4,-3),则直线P1P3的斜率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:
①若m⊥α,n⊥α,则m⊥n;②若α∥β,β∥γ,m⊥α,则m⊥γ;
③若m∥α,n∥α,则m∥n;④若α⊥γ,β⊥γ,则α∥β.
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个结论:
①偶函数的图象一定与Y轴相交;
②奇函数的图象一定通过原点;
③f(x)=0(x∈R)既是奇函数,又是偶函数;
④偶函数的图象关于y轴对称.
其中正确的是
 
.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

在二面角α-l-β 的半平面α内,线段AB⊥l,垂足为B;在半平面β内,线段CD⊥l,垂足为D;M为l上任一点.若AB=2,CD=3,BD=1,则AM+CM的最小值为(  )
A、
26
B、
23
C、
21
D、
19

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中,错误的个数是(  )
①一条直线与一个点就能确定一个平面   
②若直线a∥b,b?平面α,则a∥α
③若函数y=f(x)定义域内存在x=x0满足f'(x0)=0,则x=x0必定是y=f(x)的极值点
④函数的极大值就是最大值.
A、1个B、2个C、3个D、4个

查看答案和解析>>

同步练习册答案