精英家教网 > 高中数学 > 题目详情
已知集合A={x||x+1|<1},B={x|y=
(
1
2
)x-2
,y∈R},则A∩∁RB=(  )
A、(-2,1)
B、(-2,-1]
C、(-1,0)
D、[-1,0)
考点:交、并、补集的混合运算
专题:集合
分析:先求出集合A,B的对应元素,然后根据集合的基本运算即可得到结论.
解答: 解:A={x||x+1|<1}={x|-2<x<0},B={x|y=
(
1
2
)x-2
,y∈R}={x|(
1
2
)x-2≥0
}={x|x≤-1},
∴∁RB={x|x>-1},
即A∩∁RB={x|-1<x<0},
故选:C.
点评:本题主要考查集合的基本运算,根据条件求出集合A,B是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

进入2013年后全国各地雾霾天气频发,一个重要的诱因是空气中细小颗粒物.我国新引入PM2.5来衡量大气的质量.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国PM2.5标准采用世卫组织设定的最宽限值,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米及其以上空气质量为超标.长沙市环保局从该市市区2013年1月份的PM2.5监测数据中随机抽取7天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).
(Ⅰ)这7天的平均值是否超标?
(Ⅱ)若从这7天的数据中随机抽出2天,求恰有一天空气质量超标的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下三个关于x的不等式:①x2-4x+3<0,②
3
x+1
>1
,③2x2+m2x+m<0.若③的解集非空,且满足③的x至少满足①和②中的一个,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线y2-
x2
m
=1
的离心率e=2,则以双曲线的两条渐近线与抛物线y2=mx的交点为顶点的三角形的面积为(  )
A、
3
B、9
3
C、27
3
D、36
3

查看答案和解析>>

科目:高中数学 来源: 题型:

条件p:-2<x<4,条件q:(x+2)(x+a)<0;若p是q的充分而不必要条件,则a的取值范围是(  )
A、(4,+∞)
B、(-∞,-4)
C、(-∞,-4]
D、[-4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、?x0∈R,ex0≤0
B、对?a>b,则ab=2,(a2+b2min=4
C、a>1,b>1是ab>1的充分条件
D、a+b=0的充要条件是
a
b
=-1

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=x2+
1
x
(x≤-
1
2
)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),已知过点P(-2,-4)的直线l的参数方程为
x=-2+t
y=-4+t
,直线l与曲线C分别交于M,N.
(1)写出曲线C和直线l的普通方程;
(2)若|PM|,|MN|,|PN|成等比数列,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,底面ABCD是一直角梯,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,PA⊥底面ABCD,PD与底面成30°角.
(1)若AE⊥PD,E为垂足,求证:BE⊥PD;
(2)在(1)的条件下,求异面直线AE与CD所成角的余弦值;
(3)求平面PAB与平面PCD所成的锐二面角的余弦值.

查看答案和解析>>

同步练习册答案