精英家教网 > 高中数学 > 题目详情
在四棱锥P-ABCD中,底面ABCD是一直角梯,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,PA⊥底面ABCD,PD与底面成30°角.
(1)若AE⊥PD,E为垂足,求证:BE⊥PD;
(2)在(1)的条件下,求异面直线AE与CD所成角的余弦值;
(3)求平面PAB与平面PCD所成的锐二面角的余弦值.
考点:二面角的平面角及求法,空间中直线与直线之间的位置关系,与二面角有关的立体几何综合题
专题:综合题,空间位置关系与距离,空间角
分析:(1)欲证直线与直线垂直,可用先证直线与平面垂直,即证明PD⊥平面BAE;
(2)过点E作EM∥CD交PC于M,连接AM,则AE与ME所成角即为AE与CD所成角;
(3)延长AB与DC相交于G点,连PG,则面PAB与面PCD的交线为PG,易知CB⊥平面PAB,过B作BF⊥PG于F点,连CF,则CF⊥PG,可得∠CFB为二面角C-PG-A的平面角.
解答: (1)证明:∵∠BAD=90°,∴BA⊥AD
∵PA⊥底面ABCD,
∴BA⊥PA.
又∵PA∩AD=A,
∴BA⊥平面PAD.
∵PD?平面PAD.
∴PD⊥BA.
又∵PD⊥AE,且BA∩AE=A,
∴PD⊥平面BAE,
∴PD⊥BE,即BE⊥PD;
(2)解:过点E作EM∥CD交PC于M,连接AM,则AE与ME所成角即为AE与CD所成角.

∵PA⊥底面ABCD,且PD与底面ABCD成30°角.
∴∠PDA=30°.
∴在Rt△PAD中,∠PAD=90°,∠PDA=30°,AD=2a
∴PA=
2
3
3
a
,PD=
4
3
3
a

∴AE=
PA•AD
PD
=
2
3
3
a•2a
4
3
3
a
=a.
∵PE=
PA2
PD
=
3
3
a
,CD=
2
a.
∴ME=
CD•PE
PD
=
2
4
a

连接AC
∵在△ACD中AD=2a,AC=
2
a,CD=
2
a,
∴AD2=AC2+CD2
∴∠ACD=90°,∴CD⊥AC,∴ME⊥AC
又∵PA⊥底面ABCD,
∴PA⊥CD,∴ME⊥PA.
∴ME⊥平面PAC.
∵MA?平面PAC,
∴ME⊥AM.
∴在Rt△AME中,cos∠MEA=
ME
AE
=
2
4

∴异面直线AE与CD所成角的余弦值为
2
4

(3)解:延长AB与DC相交于G点,连PG,则面PAB与面PCD的交线为PG,CB⊥平面PAB,过B作BF⊥PG于F点,连CF,则CF⊥PG,

∴∠CFB为二面角C-PG-A的平面角,
∵CB∥
1
2
AD,
∴GB=AB=a,∠PDA=30°,PA=
2
3
3
a,AG=2a.
∴∠PGA=30°,
∴BF=
1
2
GB=
a
2

∴FC=
a2
4
+a2
=
5
2
a,
∴cos∠BFC=
a
2
5
2
a
=
5
5

∴平面PAB与平面PCD所成的二面角的余弦值为
5
5
点评:求异面直线所成的角,可以做适当的平移,把异面直线转化为相交直线,然后在相关的三角形中借助正弦或余弦定理解出所求的角.平移时主要是根据中位线和中点条件,或者是特殊的四边形,三角形等;二面角的度量关键在于找出它的平面角,构造平面角常用的方法就是三垂线法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x||x+1|<1},B={x|y=
(
1
2
)x-2
,y∈R},则A∩∁RB=(  )
A、(-2,1)
B、(-2,-1]
C、(-1,0)
D、[-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD与BDEf均为菱形,已知∠DAB=∠DBF=60°,且面ABCD⊥面BDEF,AC=2
3

(1)求证:OF⊥平面ABCD;
(2)求二面角F-BC-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ln(x+1) , g(x)=
1
2
ax2+bx (a,b∈R)

(1)若b=2且h(x)=f(x-1)-g(x)存在单调递减区间,求实数a的取值范围;
(2)若a=0,b=1,求证:当x∈(-1,+∞)时,f(x)-g(x)≤0恒成立;
(3)设x>0,y>0,证明:xlnx+ylny>(x+y)ln
x+y
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是等比数列,且a2=3,a4=27
(1)求数列{an}的通项公式;
(2)令bn=|an|,求{bn}的前n项的和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a、b、c∈Z),已知方程f(x)=0在区间(-2,0)内有两个不等的实根,且对任意实数x恒有4x+2≤f(x)≤8x2+12x+4,求a、b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角梯形ABCD中,AD∥BC,BC=2AD=2AB=2
2
,∠ABC=90°(如图1).把△ABD沿BD翻折,使得二面角A-BD-C的平面角为θ(如图2)
(1)若θ=
π
2
,求证:CD⊥AB;
(2)是否存在适当θ的值,使得AC⊥BD,若存在,求出θ的值,若不存在说明理由;
(3)取BD中点M,BC中点N,P、Q分别为线段AB与DN上一点,使得
AP
PB
=
NQ
QD
=λ(λ∈R)
.令PQ与BD和AN所成的角分别为θ1和θ2.求证:对任意θ∈(0.π),总存在实数λ,使得sinθ1+sinθ2均存在一个不变的最大值.并求出此最大值和取得最大值时θ与λ的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+
π
6
)(x∈R,A>0,ω>0)的最小正周期为T=6π,且f(2π)=2
(1)求ω和A的值;
(2)设α,β∈[0,
π
2
],f(3α+π)=
16
5
,f(3β+
2
)=-
20
13
,求cos(α-β).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,如果存在正实数k,使对任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,则称函数f(x)为D上的“k型增函数”.已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x-a|-2a,若f(x)为R上的“2012型增函数”,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案