精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线的左右焦点分别为右支上一动点,的内切圆的圆心为,半径,则的取值范围为______

【答案】

【解析】

数形结合分析可得圆与的切点为右顶点,所以,从而得解.

根据题意得F1(﹣2,0),F2(2,0),设△AF1F2的内切圆分别与AF1,AF2切于点A1,B1,与F1F2切于点P,则|AA1|=|AB1|,|F1A1|=|F1P|,|F2B1|=|F2P|,又点A在双曲线右支上,∴|F1A|﹣|F2A|=2a=2,∴|PF1|﹣|PF2|=2a=2,而|F1P|+|F2P|=2c=4,设P点坐标为(x,0),则由|F1A|﹣|F2A|=2a=2,得(x+c)﹣(c﹣x)=2a,解得x=a=1,圆与的切点为右顶点,所以,所以.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,右焦点为,且椭圆过点

(I)求椭圆的方程;

(II)若点分别为椭圆的左右顶点,点是椭圆上不同于的动点,直线直线x=a交于点,证明:以线段为直径的圆与直线相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年寒假,因为新冠疫情全体学生只能在家进行网上学习,为了研究学生网上学习的情况,某学校随机抽取名学生对线上教学进行调查,其中男生与女生的人数之比为,抽取的学生中男生有人对线上教学满意,女生中有名表示对线上教学不满意.

1)完成列联表,并回答能否有的把握认为对线上教学是否满意 与性别有关

态度

性别

满意

不满意

合计

男生

女生

合计

100

2)从被调查的对线上教学满意的学生中,利用分层抽样抽取名学生,再在这名学生中抽取名学生,作线上学习的经验介绍,求其中抽取一名男生与一名女生的概率.

附:.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】低密度脂蛋白是一种运载胆固醇进入外周组织细胞的脂蛋白颗粒,可被氧化成氧化低密度脂蛋白,当低密度脂蛋白,尤其是氧化修饰的低密度脂蛋白过量时,它携带的胆固醇便积存在动脉壁上,久了容易引起动脉硬化,因此低密度脂蛋白被称为“坏的胆固醇”.为了调查某地中年人的低密度脂蛋白浓度是否与肥胖有关,随机调查该地100名中年人,得到2×2列联表如下:

肥胖

不肥胖

总计

低密度脂蛋白不高于

12

63

75

低密度脂蛋白高于

8

17

25

总计

20

80

100

由此得出的正确结论是( )

A.10%的把握认为“该地中年人的低密度脂蛋白浓度与肥胖有关”

B.10%的把握认为“该地中年人的低密度脂蛋白浓度与肥胖无关”

C.90%的把握认为“该地中年人的低密度脂蛋白浓度与肥胖有关”

D.90%的把握认为“该地中年人的低密度脂蛋白浓度与肥胖无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知曲线C的参数方程为为参数,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系.

(1)求曲线C的极坐标方程;

(2)设直线l的极坐标方程为,若直线l与曲线C交于M,N两点,且,求直线l的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱锥的高为6,侧面与底面成的二面角,则其内切球(与四个面都相切)的表面积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“黄梅时节家家雨”“梅雨如烟暝村树”“梅雨暂收斜照明”江南梅雨的点点滴滴都流润着浓洌的诗情每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南Q镇年梅雨季节的降雨量单位:的频率分布直方图,试用样本频率估计总体概率,解答下列问题:

“梅实初黄暮雨深”假设每年的梅雨天气相互独立,求Q镇未来三年里至少有两年梅雨季节的降雨量超过350mm的概率;

“江南梅雨无限愁”在Q镇承包了20亩土地种植杨梅的老李也在犯愁,他过去种植的甲品种杨梅,平均每年的总利润为28万元而乙品种杨梅的亩产量与降雨量之间的关系如下面统计表所示,又知乙品种杨梅的单位利润为,请你帮助老李排解忧愁,他来年应该种植哪个品种的杨梅可以使总利润万元的期望更大?需说明理由

降雨量

亩产量

500

700

600

400

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数上是单调函数,则a的取值范围是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系内的动点P到直线的距离与到点的距离比为

1)求动点P所在曲线E的方程;

2)设点Q为曲线E轴正半轴的交点,过坐标原点O作直线,与曲线E相交于异于点的不同两点,点C满足,直线分别与以C为圆心,为半径的圆相交于点A和点B,求△QAC与△QBC的面积之比的取值范围.

查看答案和解析>>

同步练习册答案