精英家教网 > 高中数学 > 题目详情
试求[
5+
5+
5+
5+
5
]的值,[x]为不超过x的最大整数.
考点:根式与分数指数幂的互化及其化简运算
专题:计算题,函数的性质及应用
分析:由2<
5
<3可推出2<
5+
5
<3,同理可推出2<
5+
5+
5+
5+
5
<3,从而得到[
5+
5+
5+
5+
5
]=2.
解答: 解:∵2<
5
<3,
∴7<5+
5
<8,
∴2<
5+
5
<3,
同理2<
5+
5+
5+
5+
5
<3,
故[
5+
5+
5+
5+
5
]=2.
点评:本题考查了根式的化简与计算,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若cosα=cosβ,则用α表示β的式子是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-x2+4x+3,x>0
x,-1≤x≤0
1
x
x<-1
,g(x)=f(x)+2k,若函数g(x)恰有两个不同的零点,则实数k的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(x1,y1),
b
=(x2,y2),若|
a
|=2,|
b
|=3,
a
b
=-6,并且x2+y2≠0,则
x1+y1
x2+y2
的值是(  )
A、
2
3
B、-
2
3
C、
5
6
D、-
5
6

查看答案和解析>>

科目:高中数学 来源: 题型:

若将函数y=sin(ωx+
π
3
)(ω>0)的图象向左平移
π
4
个单位,与函数y=sin(ωx+
π
4
)的图象重合,则ω的最小值为(  )
A、
1
12
B、
1
3
C、2
D、
23
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x2-1,g(x)=
x-1x≥0
x+1x<0
,求f[g(x)]和g[f(x)]的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:实数x满足(x-a)(x-3a)<0,其中a>0,命题q:实数x满足B={x|
x-3
x-2
<0}

(Ⅰ)若a=1且p∧q为真,求实数x的取值范围; 
(Ⅱ)若q是p的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数fk(x)=xk+bx+c(k∈N*,b,c∈R),g(x)=logax(a>0,a≠1).
(1)若b+c=1,且fk(1)=g(
1
4
),求a的值;
(2)若k=2,记函数fk(x)在[-1,1]上的最大值为M,最小值为m,求M-m≤4时的b的取值范围;
(3)判断是否存在大于1的实数a,使得对任意x1∈[a,2a],都有x2∈[a,a2]满足等式:g(x1)+g(x2)=p,且满足该等式的常数p的取值唯一?若存在,求出所有符合条件的a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=log 
1
2
sin(2x+
π
4
)的单调减区间为(  )
A、(kπ-
π
4
,kπ](k∈Z)
B、(kπ-
π
8
](k∈Z)
C、(kπ-
π
8
,kπ+
π
8
](k∈Z)
D、(kπ+
π
8
,kπ+
8
](k∈Z)

查看答案和解析>>

同步练习册答案