精英家教网 > 高中数学 > 题目详情
12.若函数f(x)=x2+ax+$\frac{1}{x}$在[$\frac{1}{3}$,+∞)上是增函数,则实数a的取值范围是(  )
A.[-1,0]B.[0,$\frac{25}{3}$]C.[$\frac{25}{3}$,+∞)D.[9,+∞)

分析 函数f(x)=x2+ax+$\frac{1}{x}$在[$\frac{1}{3}$,+∞)上是增函数,则其导函数在[$\frac{1}{3}$,+∞)上是非负值,又因导函数为递增函数,只需最小值非负即可.

解答 解:f(x)=x2+ax+$\frac{1}{x}$在[$\frac{1}{3}$,+∞)上是增函数,
∴f'(x)=2x+a-$\frac{1}{{x}^{2}}$在[$\frac{1}{3}$,+∞)上是非负值,
∵f'(x)=2x+a-$\frac{1}{{x}^{2}}$在[$\frac{1}{3}$,+∞)上递增,
∴f'($\frac{1}{3}$)=$\frac{2}{3}$-9+a≥0,
∴a≥$\frac{25}{3}$.
故选:C.

点评 考查了导函数的应用,属于基础题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.下列有关命题的说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
B.线性回归直线方程y=bx+a恒过样本中心$(\overline x,\overline y)$,且至少经过一个样本点
C.命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”
D.命题“若x=y,则sinx=siny”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知O是锐角△ABC的外接圆圆心,∠A=60°,$\frac{cosB}{sinC}$•$\overrightarrow{AB}$+$\frac{cosC}{sinB}$•$\overrightarrow{AC}$=m•$\overrightarrow{OA}$,则m的值为(  )
A.-$\sqrt{3}$B.$\sqrt{3}$C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a是方程x+lgx=4的根,b是方程x+10x=4的根,函数f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2+(a+b-4)x,若对任意x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是(  )
A.[$\sqrt{2}$,+∞)B.[2,+∞)C.(0,2]D.[-$\sqrt{2}$,-1]∪[$\sqrt{2}$,$\sqrt{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某商场销售一种“艾丽莎”品牌服装,销售经理根据销售记录发现,该服装在过去的一个月内(以30天计)每件的销售价格P(x)(百元)与时间x(天)的函数关系近似满足P(x)=1+$\frac{k}{x}$(k为正的常数),日销售量Q(x)(件)与时间x(天)的部分数据如表所示:
 x(天) 10 20 25 30
 Q(x)(件) 110 120 125 120
已知第2哦天的日销售量为126百元.
(Ⅰ)求k的值;
(Ⅱ)给出以下三种函数模型:
①Q(x)=a•bx
②Q(x)=a•logbx;
③Q(x)=a|x-25|+b.
请您根据如表中的数据,从中选择你认为最合适的一种函数来描述日销售量Q(x)(件)与时间x(天)的变化关系,并求出该函数的解析式;
(Ⅲ)求该服装的日销收入f(x)(1≤x≤30,x∈N*)(百元)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.抛物线y=4x2的准线方程为(  )
A.x=-1B.y=-1C.x=-$\frac{1}{16}$D.y=-$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=ax2-(a+2)x+2.
(1)若实数a<0,求关于x的不等式f(x)>0的解集;
(2)若“$\frac{1}{2}$≤x≤$\frac{3}{4}$”是“f(x)+2x<0”的充分条件,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若复数z满足(1-i2)z=1+i3,则z的虚部为(  )
A.0B.$\frac{1}{2}$C.1D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某人上午7时,乘摩托艇从A港出发前往B港,所需时间x至少为3小时,至多为10小时,然后从B港乘汽车前往C市,所需时间y至少为2.5小时,至多为12.5小时,且要求到达C市的时间为同一天下午4时至9时之间,若从A港到C市所需要的经费ω=100+3(5-x)+2(8-y)元,则所需经费的最小值为93(元)

查看答案和解析>>

同步练习册答案