精英家教网 > 高中数学 > 题目详情
6.在平面直角坐标系xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{2}}{2}$,且点P(2,1)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若点A、B都在椭圆C上,且AB中点M在线段OP(不包括端点)上.求△AOB面积的最大值.

分析 (Ⅰ)由题意列出关于a,b,c的方程组,求解方程组可得a,b的值,则椭圆方程可求;
(Ⅱ)利用“点差法”求出A,B所在直线的斜率,设出直线方程,与椭圆方程联立,由弦长公式求得弦长,再由点到直线的距离公式求出原点到直线AB的距离,代入三角形面积公式,利用基本不等式求得最值.

解答 解:(Ⅰ)由题意得:$\left\{\begin{array}{l}{e=\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{\frac{4}{{a}^{2}}+\frac{1}{{b}^{2}}=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得$a=\sqrt{6},b=\sqrt{3}$,
∴椭圆C的方程为$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{3}=1$;
(Ⅱ)设A(x1,y1),B(x2,y2),M(x0,y0),直线AB的斜率为k,
则$\left\{\begin{array}{l}{\frac{{{x}_{1}}^{2}}{6}+\frac{{{y}_{1}}^{2}}{3}=1}\\{\frac{{{x}_{2}}^{2}}{6}+\frac{{{y}_{2}}^{2}}{3}=1}\end{array}\right.$,两式作差可得$\frac{{{x}_{1}}^{2}-{{x}_{2}}^{2}}{6}+\frac{{{y}_{1}}^{2}-{{y}_{2}}^{2}}{3}=0$,得$\frac{2{x}_{0}}{6}+\frac{2{y}_{0}}{3}•k=0$,
又直线OP:$y=\frac{1}{2}x$,M在线段OP上,
∴${y}_{0}=\frac{1}{2}{x}_{0}$,解得k=-1.
设直线AB的方程为y=-x+m,m∈(0,3),
联立$\left\{\begin{array}{l}{y=-x+m}\\{\frac{{x}^{2}}{6}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,得3x2-4mx+2m2-6=0,
△=16m2-12(2m2-6)=72-8m2>0,得-3<m<3.
${x}_{1}+{x}_{2}=\frac{4m}{3},{x}_{1}{x}_{2}=\frac{2{m}^{2}-6}{3}$.
∴|AB|=$\sqrt{1+(-1)^{2}}|{x}_{1}-{x}_{2}|=\frac{4}{3}\sqrt{9-{m}^{2}}$,原点到直线的距离d=$\frac{|m|}{\sqrt{2}}$,
∴${S}_{△OAB}=\frac{1}{2}×\frac{4}{3}\sqrt{9-{m}^{2}}•\frac{|m|}{\sqrt{2}}=\frac{\sqrt{2}}{3}\sqrt{(9-{m}^{2}){m}^{2}}≤\frac{3\sqrt{2}}{2}$.
当且仅当$m=\frac{3\sqrt{2}}{2}$∈(0,3)时,等号成立.
∴△OAB面积的最大值$\frac{3\sqrt{2}}{2}$.

点评 本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,训练了利用基本不等式求最值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知f(x)=$\left\{\begin{array}{l}3{x^2}-4,x>0\\ 2,x=0\\-1,x<0\end{array}$,则f(f(2))=188.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某地区有大型商场x个,中型商场y个,小型商场z个,x:y:z=2:4:9,为了掌握该地区商场的营业情况,采用分层抽样的方法抽取一个容量为45的样本,则抽取的中型商场的个数为(  )
A.3B.6C.12D.27

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,“$\overrightarrow{CA}•\overrightarrow{CB}>0$”,是“△ABC为锐角三角形”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.关于x的不等式x2-(2a+1)x+(a2+a-2)>0、x2-(a2+a)x+a3<0的解集分别为M和N
(1)试求M和N
(2)若M∩N=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等比数列{an}中每一项都是正数,如果a2=4,a1•a5=64
(1)求数列{an}的通项公式an
(2)若数列{n•an}的前n的和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=2-$\frac{1}{x+1}$的图象的对称中心的坐标是(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.奇函数f(x)在[0,+∞)单调递增,则f(-2)≤f(x2-3x)≤0整数解有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图1,在Rt△ABC中,∠ABC=60°,∠BAC=90°,AD是BC上的高,沿AD将△ABC折成600的二面角B-AD-C,如图2.
(1)证明:平面ABD⊥平面BCD.
(2)设E为BC的中点,BD=2,求异面直线AE与BD所成的角的大小.

查看答案和解析>>

同步练习册答案