分析 (1)利用等比数列的性质可求得a3=8,又a2=4,从而可求得公比q=2,于是可求得数列{an}的通项公式;
(2)由(1)知an=2n,数列{n•an}的前n的和Sn=2+2•22+3•23+…+n•2n,利用错位相减法即可求得Sn.
解答 解:(1)∵正项等比数列{an}中,a1•a5=${{a}_{3}}^{2}$=64,
∴a3=8,又a2=4,
∴公比q=$\frac{{a}_{3}}{{a}_{2}}$=2,
∴an=a2•2n-2=2n.
(2)∵Sn=2+2•22+3•23+…+n•2n①,
∴2Sn=22+2•23+3•24+…+(n-1)•2n+n•2n+1②,
①-②得:-Sn=2+22+23+24+…+2n-n•2n+1=$\frac{2(1{-2}^{n})}{1-2}$-n•2n+1=(1-n)2n+1-2,
∴Sn=(n-1)2n+1+2.
点评 本题考查数列的求和,考查等比数列的通项公式与性质的应用,突出考查错位相减法的运用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x-2y+7=0 | B. | 2x-y+5=0 | C. | x-2y-5=0 | D. | 2x+y-5=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com