精英家教网 > 高中数学 > 题目详情
6.抛物线y2=8x的焦点F与双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)右焦点重合,又P为两曲线的一个公共交点,且|PF|=5,则双曲线的实轴长为(  )
A.1B.2C.$\sqrt{17}-3$D.6

分析 求得抛物线的焦点和准线方程,可得c=2,设出P的坐标,运用抛物线的定义,可得P的坐标,代入双曲线的方程,解得a=1,进而得到双曲线的实轴长.

解答 解:抛物线y2=8x的焦点F(2,0),准线为x=-2,
由题意可得c=2,
设P(m,n),由抛物线的定义可得|PF|=m+2=5,
解得m=3,n=±2$\sqrt{6}$,
将P(3,±2$\sqrt{6}$)代入双曲线的方程,可得
$\frac{9}{{a}^{2}}$-$\frac{24}{{b}^{2}}$=1,且a2+b2=4,
解得a=1,b=$\sqrt{3}$,
即有双曲线的实轴长为2a=2.
故选:B.

点评 本题考查双曲线的实轴长,注意运用抛物线的定义、方程和性质,点满足双曲线方程,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.在△ABC中,若b2+c2=2bcsinAtanB+a2,则这个三角形的形状是(  )
A.直角三角形B.锐角三角形C.钝角三角形D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x-$\frac{2a-1}{x}$-2alnx(a∈R).
(1)若函数f(x)在x=$\frac{1}{2}$处取得极值,求实数a的值;
(2)若不等式f(x)≥0在[1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,网格纸上正方形小格的边长为1,图中粗线画出的是某四棱锥的三视图,则该四棱锥的四个侧面中面积最小的一个侧面的面积为(  )
A.4B.4$\sqrt{6}$C.8D.8$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.给出下列4个命题:
①在△ABC中,“cosA+sinA=cosB+sinB”是“A=B”的充要条件;
②b2=ac是a,b,c成等比数列的充要条件;
③若loga2<logb2<0,则a>b;
④若f(x)是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,θ∈($\frac{π}{4}$,$\frac{π}{2}$),则f(sinθ)>f(cosθ);  
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的渐近线方程为y=±2x,则双曲线的离心率为(  )
A.$\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知动点P在抛物线x2=2y上,过点P作x轴的垂线,垂足为H,动点Q满足$\overrightarrow{PQ}$=$\frac{1}{2}$$\overrightarrow{PH}$.
(1)求动点Q的轨迹E的方程;
(2)点M(-4,4),过点N(4,5)且斜率为k的直线交轨迹E于A、B两点,设直线MA、MB的斜率分别为k1、k2,求|k1-k2|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线C:x2=2py(p>0)的焦点为F,直线x=4与x轴的交点为H,与C的交点为Q,且|QF|=$\frac{3}{2}$|HQ|.
(1)求C的方程;
(2)过F的直线l与C相交于A、B两点,分别过A,B且与C相切的直线l1,l2相交于点R,求S△RAB的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,类似于中国结的一种刺绣图案,这些图案由小正方形构成,其数目越多,图案越美丽,若按照前4个图中小正方形的摆放规律,设第n个图案所包含的小正方形个数记为f(n).
(1)利用合情推理的“归纳推理思想”,归纳出f(n+1)与f(n)的关系,并通过你所得到的关系式,求出f(n)的表达式;
(2)计算:$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$,$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$,$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$+$\frac{1}{f(4)-1}$的值,猜想$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$+…+$\frac{1}{f(n)-1}$的结果,并用数学归纳法证明.

查看答案和解析>>

同步练习册答案