精英家教网 > 高中数学 > 题目详情
4.在△ABC中,角A,B,C所对的边分别为a,b,c,a=1,b=$\sqrt{3}$,且2sinAsin2$\frac{A+B}{2}$+cosAsin(A+B)-sinB=$\frac{1}{3}$.
(Ⅰ)求sinB的值;
(Ⅱ)若B是锐角,求边c的大小.

分析 (I)利用倍角公式、和差公式可得sinA,再利用正弦定理可得sinB.
(II)利用同角三角函数基本关系式可得cosB,再利用余弦定理即可得出.

解答 解:(Ⅰ)∵2sinAsin2$\frac{A+B}{2}$+cosAsin(A+B)-sinB=sinA-sinAcos(A+B)+cosAsin(A+B)-sinB=sinA+sinB-sinB=sinA,
∴$sinA=\frac{1}{3}$,
∵$\frac{a}{sinA}=\frac{b}{sinB}$,∴$\frac{1}{{\frac{1}{3}}}=\frac{{\sqrt{3}}}{sinB}$,
∴$sinB=\frac{{\sqrt{3}}}{3}$.
(Ⅱ)∵B是锐角,∴${cosB}=\frac{{\sqrt{6}}}{3}$,
又∵$cosB=\frac{{{a^2}+{c^2}-{b^2}}}{2ac}$,
即$\frac{{\sqrt{6}}}{3}=\frac{{1+{c^2}-3}}{2c}$,$3{c^2}-2\sqrt{6}c-6=0$,
则$c=\frac{{\sqrt{6}±2\sqrt{6}}}{3}$,由于c>0,∴$c=\sqrt{6}$.

点评 本题考查了倍角公式、和差公式、正弦定理余弦定理、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax-bx+$\frac{3}{2}$x2-5(a>0,且a≠1),f′(x)为f(x)的导函数,f′(0)=0.
(Ⅰ)求a,b满足的关系式(用a表示b);
(Ⅱ)当a=e(e为自然对数的底数)时,若不等式f(x)<0在开区间(n1,n2)上恒成立(n1,n2∈Z),求n2-n1的最大值;
(Ⅲ)当a>1时,若存在x1,x2∈[-1,1],使|f(x1)-f(x2)|≥e-$\frac{1}{2}$成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知复数z=$\frac{2}{1-i}$+i,则z的共轭复数为(  )
A.1+iB.1+2iC.1-2iD.2+3i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某商场五一期间搞促销活动,顾客购物满一定数额可自愿进行以下游戏,花费10元从1,2,3,4,5,6中挑选一个点数,然后掷骰子3次,若所选的点数出现,则先退还顾客10元,然后根据所选的点数出现的次数,每次再额外给顾客10元奖励;若所选的点数不出现,则10元不再退还.
(Ⅰ)某顾客参加游戏,求该顾客获奖的概率;
(Ⅱ)计算顾客在此游戏中的净收益X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知复数z=(2+i)i,其中i是虚数单位,则复数z在复平面上对应的点位于第二象限.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若x,y,z均为正实数,且x2+y2+z2=1,则$\frac{{{{(z+1)}^2}}}{2xyz}$的最小值为3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,在直角梯形ABCD中,AB∥CD,∠ADC=90°,AB=3,AD=$\sqrt{2}$,E为BC中点,若$\overrightarrow{AB}$•$\overrightarrow{AC}$=3,则$\overrightarrow{AE}$•$\overrightarrow{BC}$=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某单位利用周末时间组织员工进行一次“健康之路,携手共筑”徒步走健身活动,有n人参加,现将所有参加人员按年龄情况分为[25,30),[30,35],[35,40),[40,45),[45,50),[50,55]六组,其频率分布直方图如图所示.已知[35,40)岁年龄段中的参加者有8人.
(1)求n的值并补全频率分布直方图;
(2)从[30,40)岁年龄段中采用分层抽样的方法抽取5人作为活动的组织者,其中选取2人作为领队,在选取的2名领队中至少有1人的年龄在[35,40)内的概率.

查看答案和解析>>

同步练习册答案