精英家教网 > 高中数学 > 题目详情
16.若x,y,z均为正实数,且x2+y2+z2=1,则$\frac{{{{(z+1)}^2}}}{2xyz}$的最小值为3+2$\sqrt{2}$.

分析 由题意可得1-z2=x2+y2≥2xy,当且仅当x=y取得等号,则$\frac{{{{(z+1)}^2}}}{2xyz}$≥$\frac{(1+z)^{2}}{z(1-{z}^{2})}$=$\frac{1+z}{z(1-z)}$=$\frac{1}{3-(1+z)-\frac{2}{1+z}}$,运用基本不等式即可得到所求最小值.

解答 解:x,y,z均为正实数,且x2+y2+z2=1,
可得1-z2=x2+y2≥2xy,当且仅当x=y取得等号,
则$\frac{{{{(z+1)}^2}}}{2xyz}$≥$\frac{(1+z)^{2}}{z(1-{z}^{2})}$=$\frac{1+z}{z(1-z)}$=$\frac{1}{3-(1+z)-\frac{2}{1+z}}$≥$\frac{1}{3-2\sqrt{2}}$=3+2$\sqrt{2}$.
当且仅当1+z=$\frac{2}{1+z}$,即z=$\sqrt{2}$-1,x=y=$\sqrt{\sqrt{2}-1}$,
取得最小值3+2$\sqrt{2}$.
故答案为:3+2$\sqrt{2}$.

点评 本题考查最值的求法,注意运用消元法和基本不等式,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,OPQ是半径为2,圆心角为$\frac{π}{3}$的扇形,C是扇形弧上的一动点,记∠COP=θ,四边形OPCQ的面积为S.
(1)找出S与θ的函数关系;
(2)试探求当θ取何值时,S最大,并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知等差数列{an},Sn为数列{an}的前n项和,若Sn=an2+4n+a-4(a∈R),记数列{$\frac{1}{{S}_{n}}$}的前n项和为Tn,则T10=(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{9}{40}$D.$\frac{5}{22}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C所对的边分别为a,b,c,a=1,b=$\sqrt{3}$,且2sinAsin2$\frac{A+B}{2}$+cosAsin(A+B)-sinB=$\frac{1}{3}$.
(Ⅰ)求sinB的值;
(Ⅱ)若B是锐角,求边c的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\frac{x+2}{|x|+2}$,x∈R,则f(x2-2x)<f(3x-4)的解集是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18,(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下两种方案:
方案1:建一保护围墙,需花费1000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56000元;
方案2:不采取措施,此时,当两条河流都发生洪水时损失为60000元,只有一条河流发生洪水时,损失为10000元.
(Ⅰ)试求方案2中损失费ξ(随机变量)的分布列及期望;
(Ⅱ)试比较哪一种方案好.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,AB=BC=1,∠APB=90°,∠BPC=45°,则$\overrightarrow{PA}$•$\overrightarrow{PC}$=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设α为锐角,若cos(α+$\frac{π}{6}$)=$\frac{3}{5}$,则cos(2α-$\frac{π}{6}$)=$\frac{24}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.圆锥被一个平面截去一部分,剩余部分再被另一个平面截去一部分后,与半球(半径为r)组成一个几何体,则该几何体三视图中的正视图和俯视图如图所示,若r=1,则该几何体的体积为$\frac{5π}{6}$.

查看答案和解析>>

同步练习册答案