精英家教网 > 高中数学 > 题目详情
6.如图,OPQ是半径为2,圆心角为$\frac{π}{3}$的扇形,C是扇形弧上的一动点,记∠COP=θ,四边形OPCQ的面积为S.
(1)找出S与θ的函数关系;
(2)试探求当θ取何值时,S最大,并求出这个最大值.

分析 (1)由面积公式即可得到S与θ的函数关系.
(2)对三角函数化简,由θ的范围,得到S的最大值.

解答 解:(1)∵S=S△OPC+S△OQC=$\frac{1}{2}$OP•0Csin∠POC+$\frac{1}{2}$OQ•OCsin∠QOC
=2sinθ+2sin($\frac{π}{3}$-θ)(θ∈(0,$\frac{π}{3}$))
(2)由(1)知,S=2sinθ+2sin($\frac{π}{3}$-θ)
=sinθ+$\sqrt{3}$cosθ=2sin(θ+$\frac{π}{3}$)
∵θ∈(0,$\frac{π}{3}$),∴θ+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{2π}{3}$)
∴当θ+$\frac{π}{3}$=$\frac{π}{2}$,即θ=$\frac{π}{6}$时,S最大,为2.

点评 本题考查三角形面积公式以及对三角函数化简.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知Sn为等差数列{an}的前n项和,a1=-1,S4=14,则a2等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.$\frac{2si{n}^{2}35°-1}{cos10°-\sqrt{3}sin10°}$的值为(  )
A.1B.-1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax-bx+$\frac{3}{2}$x2-5(a>0,且a≠1),f′(x)为f(x)的导函数,f′(0)=0.
(Ⅰ)求a,b满足的关系式(用a表示b);
(Ⅱ)当a=e(e为自然对数的底数)时,若不等式f(x)<0在开区间(n1,n2)上恒成立(n1,n2∈Z),求n2-n1的最大值;
(Ⅲ)当a>1时,若存在x1,x2∈[-1,1],使|f(x1)-f(x2)|≥e-$\frac{1}{2}$成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知φ∈[0,π),函数f(x)=cos2x+cos(x+φ)是偶函数,则φ=0,f(x)的最小值为$-\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一个几何体的三视图及其尺寸如图所示,则该几何体的表面积为(  )
A.48B.80C.112D.144

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow{m}$=($\sqrt{3}$cosx+sinx,1),$\overrightarrow{n}$=(sinx,$\frac{3}{2}$),函数f(x)=$\overrightarrow{n}$$•\overrightarrow{m}$.
(1)求函数f(x)的最小周期T及单调递增区间;
(2)已知a,b,c分别△ABC内角A,B,C的对边a=2$\sqrt{3}$,c=4,且f(A)是函数f(x)在[0,$\frac{π}{2}$]上的最大值,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知复数z=$\frac{2}{1-i}$+i,则z的共轭复数为(  )
A.1+iB.1+2iC.1-2iD.2+3i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若x,y,z均为正实数,且x2+y2+z2=1,则$\frac{{{{(z+1)}^2}}}{2xyz}$的最小值为3+2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案