分析 (1)由面积公式即可得到S与θ的函数关系.
(2)对三角函数化简,由θ的范围,得到S的最大值.
解答 解:(1)∵S=S△OPC+S△OQC=$\frac{1}{2}$OP•0Csin∠POC+$\frac{1}{2}$OQ•OCsin∠QOC
=2sinθ+2sin($\frac{π}{3}$-θ)(θ∈(0,$\frac{π}{3}$))
(2)由(1)知,S=2sinθ+2sin($\frac{π}{3}$-θ)
=sinθ+$\sqrt{3}$cosθ=2sin(θ+$\frac{π}{3}$)
∵θ∈(0,$\frac{π}{3}$),∴θ+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{2π}{3}$)
∴当θ+$\frac{π}{3}$=$\frac{π}{2}$,即θ=$\frac{π}{6}$时,S最大,为2.
点评 本题考查三角形面积公式以及对三角函数化简.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com