精英家教网 > 高中数学 > 题目详情
18.已知向量$\overrightarrow{m}$=($\sqrt{3}$cosx+sinx,1),$\overrightarrow{n}$=(sinx,$\frac{3}{2}$),函数f(x)=$\overrightarrow{n}$$•\overrightarrow{m}$.
(1)求函数f(x)的最小周期T及单调递增区间;
(2)已知a,b,c分别△ABC内角A,B,C的对边a=2$\sqrt{3}$,c=4,且f(A)是函数f(x)在[0,$\frac{π}{2}$]上的最大值,求△ABC的面积S.

分析 (1)由向量的点乘运算,得到f(x)的解析式,由三角函数公式化简后得到最小正周期与递增区间.
(2)由x的范围,得到f(x)的最大值,得A,由此得到三角形面积.

解答 解:(1)∵向量$\overrightarrow{m}$=($\sqrt{3}$cosx+sinx,1),$\overrightarrow{n}$=(sinx,$\frac{3}{2}$),函数f(x)=$\overrightarrow{n}$$•\overrightarrow{m}$.
∴f(x)=$\sqrt{3}$cosxsinx+sin2x+$\frac{3}{2}$=$\frac{1-cos2x}{2}$+$\frac{\sqrt{3}}{2}$sin2x+$\frac{3}{2}$,
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x+2,
=sin(2x-$\frac{π}{6}$)+2,
∴函数f(x)的最小周期T=π.
由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,
得:kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,
∴f(x)的单调递增区间为[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z.
(2)由(1)知,f(x)=sin(2x-$\frac{π}{6}$)+2,
∵当x∈[0,$\frac{π}{2}$]时,
2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],
当2x-$\frac{π}{6}$=$\frac{π}{2}$,即x=$\frac{π}{3}$时,f(x)取得最大值3,
∴f(A)=3,得A=$\frac{π}{3}$,
由余弦定理得:a2=b2+c2-2bccosA,
可得:12=b2+16-4b,
∴b=2,
∴△ABC的面积S=$\frac{1}{2}$bcsinA=2$\sqrt{3}$.

点评 本题考查由向量的点乘运算,三角函数化简,以及由x得到A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=3+\sqrt{10}cosα}\\{y=1+\sqrt{10}sinα}}\end{array}\right.$(α为参数),以直角坐标系原点为极点,x轴正半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)若直线的极坐标方程为sinθ-cosθ=$\frac{1}{ρ}$,求直线被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦点为F1,F2,离心率为e.直线l:y=ex+a与x轴、y轴分别交于点A,B两点,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设$\overrightarrow{AM}=λ\overrightarrow{AB}$.
(Ⅰ)若$λ=\frac{3}{4}$,求椭圆C的离心率;
(Ⅱ)若△PF1F2为等腰三角形,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,OPQ是半径为2,圆心角为$\frac{π}{3}$的扇形,C是扇形弧上的一动点,记∠COP=θ,四边形OPCQ的面积为S.
(1)找出S与θ的函数关系;
(2)试探求当θ取何值时,S最大,并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x)=2$\sqrt{3}$sinxcosx-sin2x+$\frac{1}{2}$cos2x+$\frac{1}{2}$,则下列结论错误的是(  )
A.f(x)在区间(0,$\frac{π}{6}$)上单调递增
B.f(x)的一个对称中心为(-$\frac{π}{12}$,0)
C.当x∈[0,$\frac{π}{3}$]时,fx)的值域为[1,$\sqrt{3}$]
D.先将函数f(x)的图象的纵坐标不变,横坐标缩短为原来的$\frac{1}{2}$倍,再向左平移$\frac{π}{8}$个单位后得到函数y=2cos(4x+$\frac{π}{6}$)的图象

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知|${\overrightarrow a}$|=2,$\overrightarrow e$为单位向量,当$\overrightarrow a$,$\overrightarrow e$的夹角为$\frac{π}{3}$时,$\overrightarrow a$+$\overrightarrow e$在$\overrightarrow a$-$\overrightarrow e$上的投影为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\frac{\sqrt{2}}{2}$,其右焦点到直线2ax+by-$\sqrt{2}$=0的距离为$\frac{\sqrt{2}}{3}$.
(1)求椭圆C1的方程;
(2)过点P(0,-$\frac{1}{3}$)的直线l交椭圆C1于A,B两点.
①证明:线段AB的中点G恒在椭圆C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的内部;
②判断以AB为直径的圆是否恒过定点?若是,求出该定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知等差数列{an},Sn为数列{an}的前n项和,若Sn=an2+4n+a-4(a∈R),记数列{$\frac{1}{{S}_{n}}$}的前n项和为Tn,则T10=(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{9}{40}$D.$\frac{5}{22}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,AB=BC=1,∠APB=90°,∠BPC=45°,则$\overrightarrow{PA}$•$\overrightarrow{PC}$=-$\frac{4}{5}$.

查看答案和解析>>

同步练习册答案