精英家教网 > 高中数学 > 题目详情
已知tanα=
1
2
,tan(α-β)=-
2
5
,则tan(2α-β)的值是
 
考点:两角和与差的正切函数
专题:三角函数的求值
分析:tanα=
1
2
,tan(α-β)=-
2
5
,利用两角和的正切公式tan(2α-β)=tan[α+(α-β)]=
tanα+tan(α-β)
1-tanαtan(α-β)
即可求得答案.
解答: 解:∵tanα=
1
2
,tan(α-β)=-
2
5

∴tan(2α-β)=tan[α+(α-β)]=
tanα+tan(α-β)
1-tanαtan(α-β)
=
1
2
+(-
2
5
)
1-
1
2
×(-
2
5
)
=
1
12

故答案为:
1
12
点评:本题考查两角和的正切公式,考查整体代换与运算求解能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x>0,y>0,且
1
x
+
2
y
=1,则x+y的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

经统计,用于数学学习的时间(单位:小时)与成绩(单位:分)近似于线性相关关系.对某小组学生每周用于数学的学习时间x与数学成绩y进行数据收集如下:
x 15 16 18 19 22
y 102 98 115 115 120
由表中样本数据求得回归方程为
y
=bx+a,且点(a,b)在直线x+18y=m上,则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,f(1)=0,
xf′(x)-f(x)
x2
>0(x>0),则不等式xf(x)>0的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题,其中正确的命题是
 
(把所有正确的命题的选项都填上).
①函数y=f(x-2)和y=f(2-x)的图象关于直线x=2对称.
②在R上连续的函数f(x)若是增函数,则对任意x0∈R均有f′(x0)>0成立.
③底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.
④若P为双曲线x2-
y2
9
=1上一点,F1、F2为双曲线的左右焦点,且|PF2|=4,则|PF1|=2或6
⑤已知函数y=2sin(ωx+θ)(ω>0,0<θ<π)为偶函数,其图象与直线y=2的交点的横坐标为x1,x2,若|x1-x2|的最小值为π,则ω的值为2,θ的值为
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

圆x2+y2+ax+2=0与直线l相切于点A(-3,1)则直线l的方程为(  )
A、x+y+2=0
B、x-2y-2=0
C、x-y+4=0
D、2x-y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x=log3e,y=log97,z=e
1
2
,则(  )
A、x>y>z
B、y>z>x
C、z>y>x
D、z>x>y

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|log2(x-1)|-(
1
3
x有两个零点x1,x2,则(  )
A、x1x2<1
B、x1x2>x1+x2
C、x1x2=x1+x2
D、x1x2<x1+x2

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={y|0≤y<2},B={x|-1<x<1},则A∩(∁RB)=(  )
A、{x|0≤x≤1}
B、{x|1≤x<2}
C、{x|-1<x≤0}
D、{x|0≤x<1}

查看答案和解析>>

同步练习册答案