精英家教网 > 高中数学 > 题目详情
3.已知数列{an}的前n项和为Sn,且满足4(Sn+1)=$\frac{{{{({n+2})}^2}}}{n+1}{a_n}({n∈{N^*}})$
(1)求数列的通项公式an
(2)设bn=$\frac{n+1}{a_n}$,数列{bn}的前n项和为Tn,求证:Tn<$\frac{3}{4}$.

分析 (1)当n≥2时,将n换为n-1,两式相减,可得$\frac{a_n}{{{{({n+1})}^3}}}=\frac{{{a_{n-1}}}}{n^3}=…=\frac{a_2}{3^3}$,求得a2,即可得到所求通项;
(2)求得${b_n}=\frac{n+1}{a_n}=\frac{1}{{{{({n+1})}^2}}}<\frac{1}{{n({n+1})}}=\frac{1}{n}-\frac{1}{n+!}$,再由裂项相消求和,结合不等式的性质,即可得证.

解答 解:(1)当n≥2时,有4(Sn+1)=$\frac{{{{({n+2})}^2}}}{n+1}{a_n}({n∈{N^*}})$,
4(Sn-1+1)=$\frac{(n+1)^{2}}{n}$an-1
两式相减可得$4{a_n}=\frac{{{{({n+2})}^2}}}{n+1}{a_n}-\frac{{{{({n+1})}^2}}}{n}{a_{n-1}}$,
即$\frac{a_n}{{{a_{n-1}}}}=\frac{{{{({n+1})}^3}}}{n^3}$,
∴$\frac{a_n}{{{{({n+1})}^3}}}=\frac{{{a_{n-1}}}}{n^3}=…=\frac{a_2}{3^3}$
又当n=1时,a1=8,n=2时,a2=27,
∴${a_n}={({n+1})^3}$;
(2)证明:${b_n}=\frac{n+1}{a_n}=\frac{1}{{{{({n+1})}^2}}}<\frac{1}{{n({n+1})}}=\frac{1}{n}-\frac{1}{n+!}$,
∴${T_n}<\frac{1}{2^2}+\frac{1}{2×3}+\frac{1}{3×4}+…+\frac{1}{{n({n+1})}}$
=$\frac{1}{4}$+($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$)
=$\frac{1}{4}+\frac{1}{2}-\frac{1}{n+1}<\frac{3}{4}$.

点评 本题考查数列的通项的求法,注意运用数列的通项和前n项和的关系,考查数列不等式的证明,注意运用放缩法和裂项相消求和,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知圆C:x2+y2+2x-4y+3=0.
(1)在x轴、y轴上截距相等的直线l不过原点且与圆C相切,求直线l的方程;
(2)从圆C外一点P向圆引一条切线,切点为M,O为坐标原点,且MP=OP,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.有一段演绎推理是这样的:“若对数函数y=logax是增函数,已知y=${log_{\frac{1}{4}}}x$是对数函数,则y=${log_{\frac{1}{4}}}x$是增函数”
以上推理的错误是(  )
A.大前提错误导致结论错误B.小前提错误导致结论错误
C.推理形式错误导致结论错误D.大前提和小前提错误导致结论错误

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.给出下列四个判断:
①$f(x)=\frac{1}{x}$在定义域上单调递减;
②函数f(x)=2x-x2恰有两个零点;
③函数$y={(\frac{1}{2})^{|x|}}$有最大值1;
④若奇函数f(x)满足x<0时,f(x)=x2+x,则x>0时,f(x)=-x2+x.
其中正确的序号是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.有下列4个命题:
①若函数f(x)定义域为R,则g(x)=f(x)-f(-x)是奇函数;
②若函数f(x)是定义在R上的奇函数,?x∈R,f(x)+f(2-x)=0,则f(x图象关于x=1对称;
③已知x1和x2是函数定义域内的两个值(x1<x2),若f(x1)>f(x2),则f(x)在定义域内单调递减;
④若f(x)是定义在R上的奇函数,f(x+2)也是奇函数,则f(x)是以4为周期的周期函数.
其中,正确命题是①④(把所有正确结论的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合U=R,A={y|y=x2+x},B={y|y=($\frac{1}{2}$)x},则∁UB)∩A=(  )
A.[-$\frac{1}{4}$,0]B.(0,$\frac{1}{4}$]C.(-∞,$\frac{1}{4}$]D.[$\frac{1}{4}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为θ,则称$\overrightarrow{a}$◎$\overrightarrow{b}$为$\overrightarrow{a}$,$\overrightarrow{b}$的积,定义$\overrightarrow{a}$◎$\overrightarrow{b}$=|$\overrightarrow{a}$||$\overrightarrow{b}$|tanθ,若|$\overrightarrow{a}$|=5,|$\overrightarrow{b}$|=1,$\overrightarrow{a}$•$\overrightarrow{b}$=-3,则$\overrightarrow{a}$◎$\overrightarrow{b}$等于(  )
A.$-\frac{20}{3}$B.$\frac{20}{3}$C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在区间(-1,1)中随机地取出两个数m,n,求使方程x2+2mx-n2+1=0无实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数$f(x)=4cosxsin({x+\frac{π}{6}})-1$(x∈R)的最大值为2.

查看答案和解析>>

同步练习册答案