精英家教网 > 高中数学 > 题目详情
6.设Sn是等差数列{an}的前n项和,若$\frac{{a}_{7}}{{a}_{5}}$=$\frac{9}{13}$,则$\frac{{S}_{13}}{{S}_{9}}$=(  )
A.1B.-1C.2D.$\frac{1}{2}$

分析 由等差数列的前n项和公式得到$\frac{{S}_{13}}{{S}_{9}}$=$\frac{13{a}_{7}}{9{a}_{5}}$,由此能求出结果.

解答 解:∵Sn是等差数列{an}的前n项和,$\frac{{a}_{7}}{{a}_{5}}$=$\frac{9}{13}$,
∴$\frac{{S}_{13}}{{S}_{9}}$=$\frac{\frac{13}{2}({a}_{1}+{{a}_{13})}^{\;}}{\frac{9}{2}({a}_{1}+{a}_{9})}$=$\frac{13{a}_{7}}{9{a}_{5}}$=$\frac{13}{9}×\frac{9}{13}$=1.
故选:A.

点评 本题考查等差数列的前13项和与前9项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.函数y=$\frac{2x}{x+1}$的值域为{y|y≠2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知某射手射击一次,击中目标的概率是$\frac{2}{5}$.
(1)求连续射击5次,恰有3次击中目标的概率;
(2)求连续射击5次,击中目标的次数X的数学期望和方差.
(3)假设连续2次未击中目标,则中止其射击,求恰好射击5次后,被中止射击的概率.(本题结果用分数表示即可).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知α=315°,则与角α终边相同的角的集合是(  )
A.{α|α=2kπ-$\frac{π}{4}$,k∈Z}B.{α|α=2kπ+$\frac{π}{4}$,k∈Z}C.{α|α=2kπ-$\frac{5π}{4}$,k∈Z}D.{α|α=2kπ+$\frac{5π}{4}$,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow a$=(-3,2),$\overrightarrow b$=(2,1),$\overrightarrow c$=(3,-1),t∈R.
(Ⅰ)$\overrightarrow a$在$\overrightarrow b$+$\overrightarrow c$上的投影;   
(Ⅱ)若$\overrightarrow a$-t$\overrightarrow b$与$\overrightarrow c$共线,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若直线的参数方程为$\left\{\begin{array}{l}x=1+2t\\ y=2-4t\end{array}\right.$(t为参数),则直线的斜率为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知(1+sint)(1+cost)=$\frac{5}{4}$,则$\frac{1}{sint}$+$\frac{1}{cost}$的值为-$\frac{4}{3}$-$\frac{2\sqrt{10}}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.把函数f(x)=$\sqrt{2}$cos(2x+$\frac{π}{4}$)的图象沿x轴向左平移m个单位(m>0),所得函数为奇函数,则m的最小值是(  )
A.$\frac{π}{2}$B.$\frac{3π}{8}$C.$\frac{π}{4}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.公共汽车站每5分钟有一辆汽车通过,乘客到达汽车站的任一时刻是等可能的,则乘客候车不超过3分钟的概率是$\frac{3}{5}$.

查看答案和解析>>

同步练习册答案