精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=f'(-1)x2+3x-4,则f'(1)=5.

分析 根据题意,由函数f(x)的解析式对其求导可得f′(x)=2f'(-1)x+3,在其中令x=-1可得f′(-1)=2f'(-1)×(-1)+3,解可得f′(-1)的值,即可得f′(x)的解析式,将x=1代入计算可得答案.

解答 解:根据题意,函数f(x)=f'(-1)x2+3x-4,
其导数f′(x)=2f'(-1)x+3,
令x=-1可得:f′(-1)=2f'(-1)×(-1)+3,解可得f′(-1)=1,
则f′(x)=2x+3,
则f'(1)=2×1+3=5;
故答案为:5.

点评 本题考查导数的计算,注意f′(-1)为常数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.一批产品的合格率为90%,检验员抽检时出错率为10%,则检验员抽取一件产品,检验为合格品的概率是(  )
A.0.81B.0.82C.0.90D.0.91

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=$\left\{\begin{array}{l}cosπx(x≤0)\\ f(x-1)+1(x>0)\end{array}\right.$,则f($\frac{4}{3}$)的值为(  )
A.$\frac{5}{2}$B.$\frac{1}{2}$C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\sqrt{2}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的图象关于直线x=$\frac{π}{6}$对称,且图象上相邻两个最高点的距离为π
(Ⅰ)求ω和φ的值
(Ⅱ)当x∈[0,$\frac{π}{2}$]时,求函数y=f(x+$\frac{π}{24}$)-$\sqrt{2}$f(x+$\frac{π}{6}$)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.执行如图所示的算法框图,若输入的x的值为2,则输出的n的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a=$lo{g}_{\frac{1}{3}}2,b=lo{g}_{3}4,c=lo{g}_{3}2$,则a,b,c的大小关系是(  )
A.a<b<cB.b<a<cC.b<c<aD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.平面内一点A(1,2)到直线(m-1)x+2my+4=0距离的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若曲线C1的参数方程为:$\left\{\begin{array}{l}{x=2m+2a}\\{y=-m}\end{array}\right.$(m为参数),曲线C2的极坐标方程(以平面直角坐标系xOy的原点为极点,x轴的正半轴为极轴)为:ρ=4sinθ,若曲线C1与C2有公共点,则实数a的取值范围是[2-$\sqrt{5}$,2+$\sqrt{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{{e}^{x}-a}{x}$-alnx(a∈R),其中e=2.71828…是自然对数的底数.
(1)若f(x)=0的两个根分别为x1,x2,且满足x1x2=2,求a的值;
(2)当a>0,讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案