精英家教网 > 高中数学 > 题目详情
18.平面内一点A(1,2)到直线(m-1)x+2my+4=0距离的最大值为5.

分析 直线(m-1)x+2my+4=0化为:m(x+2y)+(-x+4)=0,令$\left\{\begin{array}{l}{x+2y=0}\\{-x+4=0}\end{array}\right.$,解得x,y.可得直线(m-1)x+2my+4=0经过定点P.可得平面内一点A(1,2)到直线(m-1)x+2my+4=0距离的最大值=|AP|.

解答 解:直线(m-1)x+2my+4=0化为:m(x+2y)+(-x+4)=0,
令$\left\{\begin{array}{l}{x+2y=0}\\{-x+4=0}\end{array}\right.$,解得x=4,y=-2.
∴直线(m-1)x+2my+4=0经过定点P(4,-2).
∴平面内一点A(1,2)到直线(m-1)x+2my+4=0距离的最大值
为|AP|=$\sqrt{(4-1)^{2}+(-2-2)^{2}}$=5.
故答案为:5.

点评 本题考查了直线系的应用、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.下列命题中正确的命题的序号是②
①命题“?x∈R,使得x2-1<0”的否定是“?x∈R”均有x2-1<0”
②命题“若x=3,则x2-2x-3=0”的否命题是“若x≠3,则x2-2x-3≠0”
③命题“若a,b∈R,那么log${\;}_{\frac{1}{2}}$a>log${\;}_{\frac{1}{2}}$b“是“3a<3b”的必要不充分条件
④命题“若x,y∈R,cosx=cosy“是“x=y”的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知A={x|x2-3x-4≤0,x∈Z},B={x|2x2-x-6>0,x∈Z},则A∩B的真子集个数为(  )
A.2B.3C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=f'(-1)x2+3x-4,则f'(1)=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,网格纸上小正方形的边长为1,粗线画出的是一个多面体的三视图,则该多面体的体积是(  )
A.16B.32C.48D.$\frac{64}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知动点P(x,y)在不等式组$\left\{\begin{array}{l}{x+y≤4}\\{x-y≥0}\\{y≥0}\end{array}\right.$表示的平面区域内部及其边界上运动,则z=-$\frac{1}{2}$x+y的最大值是(  )
A.1B.3C.$\frac{5}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在三棱柱ABC-A′B′C′中,△ABC是正三角形,侧棱AA′⊥底面ABC,若该三棱柱各棱长相等,则直线A′C与平面BCC′B′所成角的正弦值是(  )
A.$\frac{{\sqrt{6}}}{4}$B.$\frac{{\sqrt{10}}}{4}$C.$\frac{{\sqrt{15}}}{5}$D.$\frac{{\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,利用随机模拟的方法可以估计图中曲线y=f(x)与两直线x=2及y=0所围成的阴影部分的面积S:①先从区间[0,2]随机产生2N个数x1,x2,…xn,y1,y2,…yn,构成N个数对,(x1,y1),(x2,y2),…(xn,yn);②统计满足条件y<f(x)的点(x,y)的个数N1,已知某同学用计算器做模拟试验结果,当N=1000时,N1=300,则据此可估计S的值为1.2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知4张卡片上分别写着数字1,2,3,4,甲、乙两人等可能地从这4张卡片中选择1张,则他们选择同一张卡片的概率为(  )
A.$\frac{1}{32}$B.$\frac{1}{16}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案