精英家教网 > 高中数学 > 题目详情
18.已知tanα=-2,则2cosαsinα=-$\frac{4}{5}$.

分析 利用同角三角函数基本关系的运用化简所求后代入已知即可求值得解.

解答 解:∵tanα=-2,
∴2cosαsinα=$\frac{2cosαsinα}{co{s}^{2}α+si{n}^{2}α}$=$\frac{2tanα}{1+ta{n}^{2}α}$=$\frac{-4}{1+4}$=-$\frac{4}{5}$.
故答案为:-$\frac{4}{5}$.

点评 本题主要考查了同角三角函数基本关系的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.求值:
$\frac{1-tan7°-tan8°-tan7°tan8°}{1+tan7°+tan8°-tan7°tan8°}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在直角坐标系xOy中,函数y=f(x)的图象记为I′,若在I′上任取一点M,都能在I′上找到一点N,使得$\overrightarrow{OM}$•$\overrightarrow{ON}$=0,则称图象I′为“优美图象”.下列函数的图象为“优美图象”的是(  )
A.y=2x+1B.y=log3(x-2)C.y=$\frac{2}{x}$D.y=cosx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设an=$\frac{8n}{3}$•cosnπ•sin$\frac{nπ}{3}$•(sin$\frac{n+1}{3}$π-$\frac{1}{2}$sin$\frac{nπ}{3}$)(n∈N*),则数列{an}的前2015项和S2015=2016.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求值:sin26°+cos236°+sin6°cos36°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某日,甲乙二人随机选择早上6:00-7:00的某一时刻到达黔灵山公园早锻炼,则甲比乙提前到达超过20分钟的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{7}{9}$D.$\frac{2}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.直线l:(2a-1)x-(a+3)y-(a-11)=0(a∈R)交x轴正半轴于点A,y轴正半轴于点B,当三角形AOB(O为坐标原点)面积最小时a的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知集合A={1,2,5},B={a+4,a},若A∩B=B,则实数a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若(1+a)n(a>0)的展开式中所有项系数和为64,且展开式的第三项等于15,则a的值为1.

查看答案和解析>>

同步练习册答案