(12分)设
(1)当时,求:函数的单调区间;
(2)若时,求证:当时,不等式
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知函数.
(1)若曲线在点处的切线与直线垂直,求函数的单调区间;
(2)若对于都有成立,试求的取值范围;
(3)记.当时,函数在区间上有两个零点,
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分16分)
已知函数.
(1)求函数在点处的切线方程;
(2)若在区间上恒成立,求的取值范围;
(3)当时,求证:在区间上,满足恒成立的函数有无穷多个.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
.已知函数,其中
(1)设函数,若在区间上不是单调函数,求的取值范围.
(2)设函数是否存在,对任意给定的非零实数,存在唯一的非零
实数使得成立,若存在,求的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数.
(1)求证:函数在点处的切线恒过定点,并求出定点坐标;
(2)若在区间上恒成立,求的取值范围;
(3)当时,求证:在区间上,满足恒成立的函数
有无穷多个.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com