精英家教网 > 高中数学 > 题目详情
12.已知函数$f(x)=\left\{{\begin{array}{l}{2x-xlnx(x>0)}\\{-{x^2}-\frac{3}{2}x(x≤0)}\end{array}}\right.$有且仅有四个不同的点关于直线y=1的对称点在直线kx+y-1=0上,则实数k的取值范围为(  )
A.$(\frac{1}{2},1)$B.$(\frac{1}{2},\frac{3}{4})$C.$(\frac{1}{3},1)$D.$(\frac{1}{2},2)$

分析 将问题转化为直线y=kx+1与f(x)在(-∞,0)和(0,+∞)上各有两个交点,借助函数图象与导数的几何意义求出y=kx+1分别与f(x)的两段图象相切时的斜率即可得出k的范围.

解答 解:直线kx+y-1=0关于直线y=1的对称直线为-kx+y-1=0,
则直线-kx+y-1=0与y=f(x)的函数图象有4个交点,
当x>0时,f′(x)=1-lnx,
∴当0<x<e时,f′(x)>0,当x>e时,f′(x)<0,
∴f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,
作出y=f(x)与直线-kx+y-1=0的函数图象,如图所示:

设直线y=kx+1与y=2x-xlnx相切,切点为(x1,y1),
则$\left\{\begin{array}{l}{1-ln{x}_{1}=k}\\{2{x}_{1}-{x}_{1}ln{x}_{1}=k{x}_{1}+1}\end{array}\right.$,解得:x1=1,k=1,
设直线y=kx+1与y=-x2-$\frac{3}{2}x$(x<0)相切,切点为(x2,y2),
则$\left\{\begin{array}{l}{-2{x}_{2}-\frac{3}{2}=k}\\{-{{x}_{2}}^{2}-\frac{3}{2}{x}_{2}=k{x}_{2}+1}\end{array}\right.$,解得x2=-1,k=$\frac{1}{2}$.
∵直线y=kx+1与y=f(x)有4个交点,
∴直线y=kx+1与y=f(x)在(-∞,0)和(0,+∞)上各有2个交点,
∴$\frac{1}{2}$<k<1.
故选A.

点评 本题考查了函数零点与函数图象的关系,导数的几何意义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知点P($\sqrt{3}$,1),Q(cosx,sinx),O为坐标原点,函数f(x)=$\overrightarrow{OP}$•$\overrightarrow{QP}$.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若A为△ABC的内角,f(A)=4,BC=3,△ABC的面积为$\frac{3\sqrt{3}}{4}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知定义在R上的函数f(x)=ex+mx2-m(m>0),当x1+x2=1时,不等式f(x1)+f(0)>f(x2)+f(1)恒成立,则实数x1的取值范围是(  )
A.(-∞,0)B.$(0,\frac{1}{2})$C.$(\frac{1}{2},1)$D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,点F2关于双曲线C的一条渐近线的对称点A在该双曲线的左支上,则此双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=mlnx+$\frac{1}{x}$+2x,x∈[2,e].
(Ⅰ)若m=-1,求函数f(x)的单调区间;
(Ⅱ)若对任意的m∈[0,1],关于x的不等式f(x)≤(n+2)x恒成立,求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=x2+aln(x+1),a∈R.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若函数f(x)有两个极值点x1,x2,且x1<x2,求证:f(x2)≥($\frac{2}{\sqrt{e}}$-1)x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow{a}$=$(\frac{1}{2},\;\frac{{\sqrt{3}}}{2})$,$\overrightarrow{b}$=$(-\frac{{\sqrt{3}}}{2},\;\frac{1}{2})$,则($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{a}$=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知复数z满足z(1+i)=2,则|z|=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知点A(1,0),B(3,0),若直线y=kx+1上存在点P,满足PA⊥PB,则k的取值范围是$[-\frac{4}{3},0]$.

查看答案和解析>>

同步练习册答案