精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=log2(2x2-4x+10),g(x)=f(x)-log2(x2+x+1)
(1)求函数f(x)的值域;
(2)若g(x)>1,求x的取值范围.

分析 (1)先对函数的真数配方,求得真数的最小值,从而求得函数的最小值,即得值域;
(2)将不等式等价为:$\frac{2x^2-4x+10}{x^2+x+1}$>2,解之即可.

解答 解:(1)f(x)=log2[2(x-1)2+8],
显然,当x=1时,真数取得最小值8,
所以,函数的最小值为log28=3,
即f(x)min=f(1)=log28=3,
因此,函数f(x)的值域为[3,+∞);
(2)g(x)=f(x)-log2(x2+x+1)
=log2(2x2-4x+10)-log2(x2+x+1)
=log2$\frac{2x^2-4x+10}{x^2+x+1}$>1,
所以,$\frac{2x^2-4x+10}{x^2+x+1}$>2,
解得x<$\frac{4}{3}$,
即x的取值范围为(-∞,$\frac{4}{3}$).

点评 本题主要考查了对数函数的图象与性质,涉及函数的单调性和最值,以及对数的运算性质和不等式的解法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知程序框图如图所示.
(1)指出该程序框图的算法功能;
(2)写出该程序框图所对应的程序.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.我们用card(A)来表示有限集合A中元素的个数,例如,A={a,b,c}.则card(A)=3,设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x,x≤0}\\{lgx,x>0}\end{array}\right.$,若A={x|f(f(x)=0,x∈R}.则card(A)=(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在正方体ABCD-A1B1C1D1中.
(1)求异面直线A1B与AD1所成的角;
(2)求证:A1D⊥平面ABD1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设数列{xn}的各项都为正数且x1=1.如图,△ABC所在平面上的点Pn(n∈N*)均满足△PnAB与△PnAC的面积比为3:1,若(2xn+1)$\overrightarrow{{P}_{n}C}$+$\overrightarrow{{P}_{n}A}$=$\frac{1}{3}$xn+1$\overrightarrow{{P}_{n}B}$,则x5的值为31.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.定义a⊕b=$\left\{\begin{array}{l}{a(a≥b)}\\{b(a<b)}\end{array}\right.$.若f(x)=cosx⊕($\frac{\sqrt{2}}{2}$tanx)(-$\frac{π}{2}$<x<$\frac{π}{2}$).
(1)求函数f(x)的单调区间;
(2)若方程f(x)-$\frac{1}{sinα}$=0有解,求实数α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知p:$\frac{2x-1}{x+2}$<1,q:|x-a|<2.若p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线l经过两点A(2,1),B(6,3).
(1)求直线l的方程;(请用一般式作答)
(2)圆C的圆心为直线l与直线x-y-1=0的交点,且圆C与x轴相切,求圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.化简:(1)$\frac{sinθ-cosθ}{tanθ-1}$;
(2)cosα$\sqrt{\frac{1-sinα}{1+sinα}}$+sinα$\sqrt{\frac{1-cosα}{1+cosα}}$(α是第二象限角).

查看答案和解析>>

同步练习册答案