精英家教网 > 高中数学 > 题目详情
5.如图,在正方体ABCD-A1B1C1D1中.
(1)求异面直线A1B与AD1所成的角;
(2)求证:A1D⊥平面ABD1

分析 (1)由AD1∥BC1,得∠A1BC1是异面直线A1B与AD1所成的角,由此能求出异面直线A1B与AD1所成的角.
(2)由已知推导出A1D⊥AD1,AB⊥A1D,由此能证明A1D⊥平面ABD1

解答 解:(1)∵AD1∥BC1,∴∠A1BC1是异面直线A1B与AD1所成的角,
∵A1B=BC1=A1C1,∴∠A1BC1=60°,
∴异面直线A1B与AD1所成的角为60°.
证明:(2)∵ADD1A1是正方形,∴A1D⊥AD1
∵在正方体ABCD-A1B1C1D1中,AB⊥平面ADD1A1,A1D?平面ADD1A1
∴AB⊥A1D,
∵AB∩A1D=A,∴A1D⊥平面ABD1

点评 本题考查异面直线所成角的求法,考查线面垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=cos2x,g(x)=sinx,h(x)=sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$).
(1)判断函数H(x)=f(x+$\frac{π}{4}$)+g(x+$\frac{π}{2}$)的奇偶性,并说明理由;
(2)若函数h(x+$\frac{π}{2}$)和h(x-π)都是奇函数,将满足条件的ω按从小到大的顺序组成一个数列{an},求{an}的通项公式;
(3)求实数a与正整数n,使得F(x)=f(x)+a•g(x)在(0,nπ)内恰有147个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow{a}$=(1,-1),$\overrightarrow{b}$=(1,t).若|$\overrightarrow{a}$+$\overrightarrow{b}$|≤2,则t的取值范围是{1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=sin(x+$\frac{7}{4}$π)+cos(x-$\frac{3}{4}$π),x∈R
(1)求f(x)的最小正周期和最小值
(2)已知cos(β-α)=$\frac{4}{5}$,cos(β+α)=-$\frac{4}{5}$,0<α<β≤$\frac{π}{2}$,求[f(β)]2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知抛物线y2=8x的焦点为F,过F且斜率为2的直线交抛物线于A、B两点.
(1)求|AB|.
(2)求AB的中点M的坐标及|FM|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l1;3x-2y-1=0和l2:3x-2y-13=0,直线l与直线l1与l2的距离分别是d1,d2,若d1:d2=2:1,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=log2(2x2-4x+10),g(x)=f(x)-log2(x2+x+1)
(1)求函数f(x)的值域;
(2)若g(x)>1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设抛物线的顶点在原点,焦点是圆x2+y2=6x的圆心;
(1)求此抛物线的标准方程;
(2)过抛物线焦点且斜率为2的直线与抛物线和圆分别交于A,B,C,D四点,求△OAB与△OCD的面积之和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,5sinA+12cosB=15,12sinB+5cosA=2,则∠C=30度.

查看答案和解析>>

同步练习册答案