精英家教网 > 高中数学 > 题目详情
10.已知直线l1;3x-2y-1=0和l2:3x-2y-13=0,直线l与直线l1与l2的距离分别是d1,d2,若d1:d2=2:1,求直线l的方程.

分析 设直线l的方程为3x-2y+c=0,则|c+1|=2|c+13|,求出c,即可求直线l的方程.

解答 解:设直线l的方程为3x-2y+c=0,则|c+1|=2|c+13|,
∴c=-9或-25,
∴直线l的方程为3x-2y-9=0或3x-2y-25=0.

点评 本题考查直线方程,考查直线间距离的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知正方体ABCD-A1B1C1D1的棱长为2,点E、F分别是棱BC、CC1的中点,Q是侧面BCC1B1内一点,若A1Q∥平面AEF,则点Q的轨迹为(  )
A.一个点B.两个点C.一条线段D.两条线段

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某几何体的三视图如图所示,且该几何体的顶点都在球O的球面上,则球O的表面积为$\frac{28π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知tan(α-$\frac{β}{2}$),tan($\frac{α}{2}$+β)是一元二次函数x2-5x+6=0的两根,求tan($\frac{3α}{2}$+$\frac{β}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在正方体ABCD-A1B1C1D1中.
(1)求异面直线A1B与AD1所成的角;
(2)求证:A1D⊥平面ABD1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求倾斜角的余弦值为$\frac{3}{5}$且过点(1,2)的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.定义a⊕b=$\left\{\begin{array}{l}{a(a≥b)}\\{b(a<b)}\end{array}\right.$.若f(x)=cosx⊕($\frac{\sqrt{2}}{2}$tanx)(-$\frac{π}{2}$<x<$\frac{π}{2}$).
(1)求函数f(x)的单调区间;
(2)若方程f(x)-$\frac{1}{sinα}$=0有解,求实数α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.分别求下列函数的定义域:
(1)y=$\sqrt{-{x}^{2}+6x-5}$;
(2)y=$\frac{\sqrt{{x}^{2}-3x-4}}{|x-4|}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.直线ax-6y-12a=0(a≠0)在x轴上的截距是它在y轴上的截距的3倍,求a值及直线的斜率.

查看答案和解析>>

同步练习册答案