精英家教网 > 高中数学 > 题目详情
等差数列{an}的前n项和为Sn,已知它的公差不等于零,S3=a22,且S1,S2,S4成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=anan+1,求数列{
1
bn
}的前n项和Tn
考点:数列的求和,等差数列的性质,等比数列的性质
专题:等差数列与等比数列
分析:(1)设数列{an}的公差为d,由已知条件利用等差数列通项公式和前n项和公式及等比数列性质,求出首项和公差,由此能求出an=2n-1.
(2)由bn=anan+1=(2n-1)(2n+1),得
1
bn
=
1
(2n-1)(2n+1)
=
1
2
1
2n-1
-
1
2n+1
),由此利用裂项求和法能求出数列{
1
bn
}的前n项和Tn
解答: 解:(1)设数列{an}的公差为d,
由S3=a22,得3a2=a22,解得a2=0或a2=3,
∵S1,S2,S4成等比数列,∴S22=S1S4
(2a1+d)2=a1(4a1+6d)
化简,得d(d-2a1)=0,
∵d≠0,∴d=2a1
d=2a1
a1+d=3
,得
a1=1
d=2

∴an=2n-1.
(2)∵bn=anan+1=(2n-1)(2n+1),
1
bn
=
1
(2n-1)(2n+1)
=
1
2
1
2n-1
-
1
2n+1
),
∴Tn=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)

=
1
2
(1-
1
2n+1
)

=
n
2n+1
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=|x-1|,求f(3)=(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

给定两个命题p和q,若p是¬q的充分而不必要条件,则¬p是q的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在圆心角为直角的扇形OAB中,随机投入一点,则该点落入三角形区域(阴影部分)的概率为(  )
A、
1
B、
π
4
C、
2
π
D、
1
π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差不为0,前四项和S4=14,且a1,a3,a7成等比.
(1)求数列{an}的通项公式;
(2)另bn=2nan,求b1+b2+…+bn
(3)设Tn为数列{
1
anan+1
}
的前n项和,若Tn≤λan+1对一切n∈N+恒成立,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
c
是同一平面内的三个向量,其中
a
=(1,2).
(Ⅰ)若|
c
|=2
5
,且
c
a
,求向量
c

(Ⅱ)若|
b
|=
3
5
2
,且
a
+2
b
与2
a
-
b
垂直,求
a
b
的夹角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(ax2+2x-a)•ex(a∈R).
(1)若函数y=f(x)在x=-2处取得极值,求a的值,并判断取得的极值是极大值还是极小值;
(2)若函数y=f(x)的图象在点P(1,f(1))处的切线方程为y=2ex+b,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在一次测量活动中,要测量河两岸B、C两点间的距离,测量者在河的一侧,测得AC=24m,∠BAC=45°,∠ACB=75°,求B、C两点间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,圆x2+y2=8内有一点P0(-1,2),AB为过点P0且倾斜角为α的弦.
(1)当α=135°时,求直线AB的方程;
(2)当弦AB最短时,求直线AB的方程.

查看答案和解析>>

同步练习册答案