精英家教网 > 高中数学 > 题目详情
1.若关于自变量x的函数y=log2a(4-ax)(a>0且a≠$\frac{1}{2}$)在[1,3]上是减函数,则实数a的取值范围是( $\frac{1}{2}$,$\frac{4}{3}$).

分析 由题意利用对数函数的定义域和值域以及单调性,可得$\left\{\begin{array}{l}{a>0}\\{2a>1}\\{4-a>0}\\{4-3a>0}\end{array}\right.$,由此求得a的取值范围.

解答 解:∵关于自变量x的函数y=log2a(4-ax)(a>0且a≠$\frac{1}{2}$)在[1,3]上是减函数,∴$\left\{\begin{array}{l}{a>0}\\{2a>1}\\{4-a>0}\\{4-3a>0}\end{array}\right.$,∴$\frac{1}{2}$<a<$\frac{4}{3}$,
故答案为:( $\frac{1}{2}$,$\frac{4}{3}$).

点评 本题主要考查复合函数的单调性,对数函数的定义域和值域以及单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.一个长方体的八个顶点都在球面上,长方体的长、宽、高分别为$\sqrt{3},\sqrt{2},\sqrt{2}$,则球的表面积是7π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知过点A(0,1)的动直线l与圆C:x2+y2-4x-2y-3=0交于M,N两点.
(Ⅰ)设线段MN的中点为P,求点P的轨迹方程;
(Ⅱ)若$\overrightarrow{OM}$•$\overrightarrow{ON}$=-2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若(1+y2)(x-$\frac{1}{{x}^{4}y}$)n(n∈N*)的展开式中存在常数项,则常数项为45.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ax+k•a-x(0<a<1)为R上的奇函数.
(1)求实数k的值;
(2)指出函数f(x)的单调性(不需要证明),并求使不等式f(4x-m•2x)+f(1-2x)<0恒成立的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若集合M={y|y=2017x},S={x|y=log2017(x-1)},则下列结论正确的是(  )
A.M=SB.M∩S=∅C.M∪S=SD.M∪S=M

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)是定义在R上的偶函数,且在[0,+∞)上单调递增,若对于任意实数t,f(-4t)≤f(2at2+a)(a∈R)恒成立,则a2的最小值是(  )
A.2B.4C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,a,b,c分别为角A,B,C所对的边长,且c=-3bcosA.
(1)求$\frac{{{a^2}-{b^2}}}{c^2}$的值;  
(2)若tanC=$\frac{3}{4}$.试求tanB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.曲线 y=$\sqrt{x}$与 $y={x^{\frac{3}{2}}}$所围成的封闭图形的面积为(  )
A..$\frac{1}{2}$B.$\frac{4}{15}$C.$\frac{2}{3}$D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案