精英家教网 > 高中数学 > 题目详情
2.复数z=|$\frac{\sqrt{3}-i}{i}$|-i(i为虚数单位),则复数z的共轭复数为(  )
A.2-iB.2+iC.4-iD.4+i

分析 化简复数z,写出z的共轭复数即可.

解答 解:复数z=|$\frac{\sqrt{3}-i}{i}$|-i=$\frac{|\sqrt{3}-i|}{|i|}$-i=2-i,
∴复数z的共轭复数为$\overline{z}$=2+i.
故选:D.

点评 本题考查了复数的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知四棱柱ABCD-A1B1C1D1,侧面A1ADD1⊥面ABCD,底面ABCD是矩形,且AB=2,AD=1,AA1=$\sqrt{5}$,∠A1AD的余弦值为$\frac{\sqrt{5}}{5}$.
(1)求证:平面A1DCB1⊥平面ABCD;
(2)求BD1与平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知点M(-1,6),N(3,2),则线段MN的垂直平分线方程为(  )
A.x-y-4=0B.x-y+3=0C.x+y-5=0D.x+4y-17=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.2016年里约奥运会和残奥会吉祥物的名字于2015年12月14日揭晓,两个吉祥物分别叫维尼修斯(Vinicius)和汤姆(Tom)(如图),以此纪念巴萨诺瓦曲风的著名音乐家Viniciusde Moraes和Tom Jobim.某商场在抽奖箱中放置了除图案外,其它无差别的8张卡片,其中2张印有“维尼修斯(Vinicius)”图案,n(2≤n≤4)张印有“汤姆(Tom)”图案,其余卡片上印有“2016年里约奥运会”的图案,
(1)若n=4,从抽奖箱中任意取一卡片,记下图案后放回,连续抽取三次,求三次取出的卡片中,恰有两张印有“2016年里约奥运会”图片卡片的概率;
(2)从抽奖箱中任意抽取两张卡片,两张卡片图案相同的概率是$\frac{2}{7}$.求n的值;
(3)①当n=3时,随机抽取一次,若规定取出印有“维尼修斯(Vinicius)”图案的卡片获得16元购物券,取出印有“汤姆(Tom)”图案的卡片获得8元购物券,取出印有“2016年里约奥运会”的图案的卡片没有奖励,用ξ表示获得奖券的面值,求ξ的分布列和数学期望E(ξ).
②在①的条件下,若商场每天有800人参与抽奖活动,顾客获得的购物券全部用于捆绑其他商品消费,每1元购物券能给商场带来10元纯利润,则商场每天在这个活动中能获得的纯利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x|x+1|,x∈[-2,2].
(1)画出函数y=f(x)的图象;
(2)求f(x)的值域;
(3)试根据图象关系,解不等式f(x)≥-$\frac{1}{2}$(x+1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足:a1=1,an+1=$\frac{n{a}_{n}^{2}}{n+1}$,n∈N*
(Ⅰ)证明:
(i)an+1<an≤1;
(ii)an≤$\frac{1}{n}$;
(Ⅱ)证明:a1+a2+…+an<$\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知等差数列{an}中,a1+a12=12,则S12=(  )
A.24B.36C.72D.144

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,三棱柱ABC-A1B1C1的所有棱长都相等,∠C1CB=120°.
(1)探究直线BC与直线AB1的位置关系,并说明理由;
(2)若AB1=$\frac{\sqrt{6}}{2}$AB,求二面角C-AB1-C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(2,1),$\overrightarrow{c}$=(x,1)满足条件3$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{c}$共线,则x的值(  )
A.1B.-3C.-2D.-1

查看答案和解析>>

同步练习册答案