精英家教网 > 高中数学 > 题目详情
7.已知(x2+$\frac{k}{x}$)6(k>0)的展开式的常数项为240,则$\int_1^k{\frac{1}{x}}dx$=ln2.

分析 利用二项式的通项公式即可得出k的值,再根据定积分的计算法则计算即可

解答 解:二项(x2+$\frac{k}{x}$)6(k>0)的展开式的通项公式为Tr+1=C6r(x26-r($\frac{k}{x}$)r=C6rkrx12-3r
令12-3r=0,解得r=4,
∴二项式的展开式中的常数项为C64k4=15k4=240,
解得:k=2,
∴${∫}_{1}^{2}$$\frac{1}{x}$dx=lnx|${\;}_{1}^{2}$=ln2,
故答案为:ln2

点评 本题考查了二项式的通项公式、常数项的求法和定积分的计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.设全集U=R,若集合A={x|x2+x=0},B={x|x2-x≤0},则A∩B={0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知不等式组$\left\{\begin{array}{l}0≤x≤π\\ y≤sinx+a\\ y≥0\end{array}\right.$所对应的平面区域面积为2+2π,则$\sqrt{3}x+2y+1$的最大值为(  )
A.$\frac{{5\sqrt{3}π}}{6}+6$B.$\sqrt{3}π+7$C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.四棱锥E-ABCD中,△ABD为正三角形,∠BCD=120°,CB=CD-CE=1,AB=AD=AE=$\sqrt{3}$,且EC⊥BD
(1)求证:平面BED⊥平面AEC;
(2)求二面角D--BM-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,角A、B、C的对边分别为a、b、c,已知A=$\frac{π}{6}$,a=1,b=$\sqrt{3}$,则c=2或1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知i为虚数单位,则复数$\frac{1-i}{1+i}$的模为(  )
A.0B.$\sqrt{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设向量$\overrightarrow a=({x,2}),\overrightarrow b=({1,-1})$,且$({\overrightarrow a-\overrightarrow b})⊥\overrightarrow b$,则x的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2,则不等式(x+2016)2f(x+2016)-f(-1)>0的解集为(-∞,-2017).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知tanα,$\frac{1}{tanα}$是关于x的方程x2-kx+k2-3=0的两个实根,且3π<α<$\frac{7}{2}$π,则cosα+sinα=(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.-$\sqrt{2}$D.-$\sqrt{3}$

查看答案和解析>>

同步练习册答案