精英家教网 > 高中数学 > 题目详情
已知a>0,bR,函数
(Ⅰ)证明:当0≤x≤1时,
(ⅰ)函数的最大值为|2a-b|﹢a;
(ⅱ) +|2a-b|﹢a≥0;
(Ⅱ) 若﹣1≤≤1对x[0,1]恒成立,求a+b的取值范围.
(Ⅰ) 见解析;
(Ⅱ)
本题主要考察不等式,导数,单调性,线性规划等知识点及综合运用能力。
(Ⅰ)
(ⅰ)
当b≤0时,>0在0≤x≤1上恒成立,
此时的最大值为:=|2a-b|﹢a;
当b>0时,在0≤x≤1上的正负性不能判断,
此时的最大值为:
=|2a-b|﹢a;
综上所述:函数在0≤x≤1上的最大值为|2a-b|﹢a;
(ⅱ) 要证+|2a-b|﹢a≥0,即证=﹣≤|2a-b|﹢a.
亦即证在0≤x≤1上的最大值小于(或等于)|2a-b|﹢a,
,∴令
当b≤0时,<0在0≤x≤1上恒成立,
此时的最大值为:=|2a-b|﹢a;
当b<0时,在0≤x≤1上的正负性不能判断,


≤|2a-b|﹢a;
综上所述:函数在0≤x≤1上的最大值小于(或等于)|2a-b|﹢a.
+|2a-b|﹢a≥0在0≤x≤1上恒成立.
(Ⅱ)由(Ⅰ)知:函数在0≤x≤1上的最大值为|2a-b|﹢a,
且函数在0≤x≤1上的最小值比﹣(|2a-b|﹢a)要大.
∵﹣1≤≤1对x[0,1]恒成立,
∴|2a-b|﹢a≤1.
取b为纵轴,a为横轴.
则可行域为:,目标函数为z=a+b.
作图如下:
由图易得:当目标函数为z=a+b过P(1,2)时,有
∴所求a+b的取值范围为:
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2-alnx(a∈R).
(1)若a=2,求f(x)的单调区间和极值;
(2)求f(x)在[1,e]上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求的定义域;
(2)判断函数的奇偶性,并予以证明;
(3)若,猜想之间的关系并证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数满足:①定义在上;②当时,;③对于任意的,有.
(1)取一个对数函数,验证它是否满足条件②,③;
(2)对于满足条件①,②,③的一般函数,判断是否具有奇偶性和单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则 (    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求函数的单调递减区间;
(Ⅱ)令函数),求函数的最大值的表达式

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是定义在R上的奇函数,且,当时,有恒成立,则不等式的解集为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的递增区间是 (  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数 若存在,则实数的取值范围为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案