| A. | 5$\sqrt{3}$ | B. | 5 | C. | 5$\sqrt{2}$ | D. | 10$\sqrt{3}$ |
分析 由已知利用余弦定理可求cosC,进而可求sinC,利用三角形面积公式即可得解.
解答 解:在△ABC中,∵a2+b2-c2=ab,
∴由余弦定理可得:cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{ab}{2ab}$=$\frac{1}{2}$,
∵C∈(0,π),
∴C=$\frac{π}{3}$,sinC=$\frac{\sqrt{3}}{2}$,
又∵ab=20,
∴△ABC面积S=$\frac{1}{2}$absinC=$\frac{1}{2}×20×\frac{\sqrt{3}}{2}$=5$\sqrt{3}$.
故选:A.
点评 本题主要考查了余弦定理,三角形面积公式在解三角形中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1),(3,+∞) | B. | ($\frac{1}{2}$,3) | C. | (-∞,$\frac{1}{2}$),(3,+∞) | D. | (1,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 位置①处 | B. | 位置②处 | C. | 位置③处 | D. | 位置④处 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com