精英家教网 > 高中数学 > 题目详情
3.某电视台举办了“中华好声音”大型歌手选修活动,过程分为初赛、复赛和决赛,经初赛进入复赛的40名选手被平均分成甲、乙两个班,由组委会聘请两位导师各负责一个班进行声乐培训.如图是根据40名选手参加复赛时获得的100名大众评审的支持票数制成的茎叶图:

赛制规定:参加复赛的40名选手中,获得的支持票数排在前5名的选手可进入决赛,若第5名出现并列,则一起进入决赛;另外,票数不低于95票的选手在决赛时拥有“优先挑战权”.
求:从进入决赛的选手中随机抽出3名,求其中恰有1名拥有“优先挑战权”的概率.

分析 根据题意,进入决赛的选手共有6名,拥有“优先挑战权”的选手共有3名;
对选手编号,用列举法求出基本事件数,计算所求的概率值.

解答 解:进入决赛的选手共有6名,其中拥有“优先挑战权”的选手共有3名;
设拥有“优先挑战权”的选手编号为1,2,3,其余3人编号为A,B,C.
被选中3人的编号所有可能的情况共20种,列举如下:
123,12A,12B,12C,13A,13B,13C,1AB,1AC,1BC,
23A,23B,23C,2AB,2AC,2BC,
3AB,3AC,3BC,
ABC;
其中拥有“优先挑战权”的选手恰有1名的情况共9种,如下:
1AB,1AC,1BC,2AB,2AC,2BC,3AB,3AC,3BC;
故所求的概率为$P=\frac{9}{20}$.

点评 本题考查了用列举法求古典概型的概率问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.把十进制数2016化为八进制数的末尾数字是(  )
A.0B.3C.4D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知A2n4=120Cn2,则n的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设M为椭圆$\frac{x^2}{25}$+$\frac{y^2}{9}$=1上的一个点,F1,F2为焦点,∠F1MF2=60°,则△MF1F2的周长和面积分别为(  )
A.16,$\sqrt{3}$B.18,$\sqrt{3}$C.16,$3\sqrt{3}$D.18,$3\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若点P(a,2)在2x+y<4表示的区域内,则实数a的取值范围是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,点A,B是单位圆上的两点,点C是圆与x轴正半轴的交点,若点A的坐标为(-$\frac{3}{5}$,$\frac{4}{5}$),记∠COA=α,且△AOB是正三角形.
(Ⅰ)求$\frac{1+sin2α}{1+cos2α}$的值;
(Ⅱ)求cos∠COB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知Sn是等差数列{an}的前n项和,且S5<S6>S7,有下列四个说法:
①d<0,②S6为Sn中最大项,③S11>0,④S12<0,
其中正确的说法的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若△ABC中角A,B,C所对应a,b,c满足a2+b2-c2=ab=20,则△ABC面积为(  )
A.5$\sqrt{3}$B.5C.5$\sqrt{2}$D.10$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.D(aX+E(X2)-D(X))等于(  )
A.无法求B.0C.a2D(X)D.2aD(X)+(E(X))2

查看答案和解析>>

同步练习册答案