10£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬ÍÖÔ²µÄ¶ÌÖá¶ËµãÓëË«ÇúÏß$\frac{{y}^{2}}{2}$-x2=1µÄ½¹µãÖØºÏ£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèP£¨x0£¬y0£©£¨x0y0¡Ù0£©ÎªÍÖÔ²CÉÏÒ»µã£¬¹ýµãP×÷xÖáµÄ´¹Ïߣ¬´¹×ãΪQ£¬È¡µãB£¨0£¬2£©£¬Á¬½áBQ£¬¹ýµãB×÷BQµÄ´¹Ïß½»xÖáÓÚµãD£¬µãEÊǵãD¹ØÓÚyÖáµÄ¶Ô³Æµã£¬ÊÔÅжÏÖ±ÏßPEÓëÍÖÔ²CµÄλÖùØÏµ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

·ÖÎö £¨1£©ÓÉÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍË«ÇúÏߵĽ¹µã×ø±ê£¬¿ÉµÃÍÖÔ²µÄb£¬ÔÙÓÉa£¬b£¬cµÄ¹ØÏµ£¬½âµÃa£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÉèD£¨d£¬0£©£¬ÇóµÃÏòÁ¿BD£¬BQµÄ×ø±ê£¬ÓÉ´¹Ö±µÄÌõ¼þ¿ÉµÃd£¬Çó³öÖ±ÏßPEµÄбÂʺͷ½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃÅбðʽ£¬¼´¿ÉÅжÏËüÃǵÄλÖùØÏµ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃe=$\frac{1}{2}$£¬¼´$\frac{c}{a}$=$\frac{1}{2}$£¬
ÓÖË«ÇúÏß$\frac{{y}^{2}}{2}$-x2=1µÄ½¹µãΪ£¨0£¬$¡À\sqrt{3}$£©£¬
¼´ÓÐb=$\sqrt{3}$£¬a2-c2=3£¬
½âµÃa=2£¬
ÔòÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£»
£¨2£©ÓÉÌâÒâÖªµãQµã×ø±êΪ£¨x0£¬0£©£¬
ÉèD£¨d£¬0£©£¬Ôò$\overrightarrow{BD}$=£¨d£¬-2£©£¬$\overrightarrow{BQ}$=£¨x0£¬-2£©£¬
ÓÉBD¡ÍBQ£¬µÃ$\overrightarrow{BD}$•$\overrightarrow{BQ}$=0£¬¡àdx0+4=0£¬¡àd=-$\frac{4}{{x}_{0}}$£®
ÓɵãEÊǵãD¹ØÓÚyÖáµÄ¶Ô³Æµã£¬µÃµãE£¨$\frac{4}{{x}_{0}}$£¬0£©£®
Ö±ÏßPEµÄбÂÊΪ$\frac{{x}_{0}{y}_{0}}{{{x}_{0}}^{2}-4}$£¬
ÒòµãPÔÚÍÖÔ²CÉÏ£¬¹Ê3x02+4y02=12£®
ÓÚÊÇÖ±ÏßPEµÄбÂÊΪ-$\frac{3{x}_{0}}{4{y}_{0}}$£¬Æä·½³ÌΪy=-$\frac{3{x}_{0}}{4{y}_{0}}$£¨x-$\frac{4}{{x}_{0}}$£©£®
´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃ3x02+4y02=12£¬
»¯¼òµÃx2-2x0x+x02=0£®
Òò¡÷=4x02-4x02=0£¬¹Ê·½³Ì×éÓÐÁ½×éÏàͬµÄʵÊý½â£¬
ËùÒÔÖ±ÏßPEÓëÍÖÔ²CÏàÇУ®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÍÖÔ²µÄÀëÐÄÂʺͷ½³ÌµÄÔËÓã¬ÁªÁ¢Ö±Ïß·½³ÌÅжÏÖ±ÏߺÍÍÖÔ²µÄλÖùØÏµ£¬×¢ÒâÔËÓõãÔÚÇúÏßÉÏ£¬µãÂú×ã·½³Ì£¬Í¬Ê±¿¼²éÖ±ÏßµÄбÂʺÍÖ±Ïß·½³Ì£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬ÀëÐÄÂÊΪ$\frac{1}{2}$£¬MΪÍÖÔ²ÉÏÈÎÒâÒ»µãÇÒ¡÷MF1F2µÄÖܳ¤µÈÓÚ6£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÒÔMΪԲÐÄ£¬MF1Ϊ°ë¾¶×÷Ô²M£¬µ±Ô²MÓëÖ±Ïßl£ºx=4Óй«¹²µãʱ£¬Çó¡÷MF1F2Ãæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Ä³´ú±íÍÅÓÐa£¬b£¬c£¬d£¬e£¬fÁùÃûÄÐÐÔ³ÉԱȫ²¿×¡½øA£¬B£¬CÈý¸ö·¿¼ä£¬Ã¿·¿¼äס2ÈË£¬ÆäÖÐaûס·¿¼äA£¬Í¬Ê±bûס·¿¼äBµÄ¸ÅÂÊÊÇ$\frac{1}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªµÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÈôS11=S16£¬ÇÒam+a12=0£¬Ôòm=£¨¡¡¡¡£©
A£®16B£®14C£®4D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÔÚij´ÎÊýѧ²âÊÔÖУ¬¼Ç´ð¶ÔÌâÊý£º´óÓÚ»òµÈÓÚ6µÀΪºÏ¸ñ£¬Ð¡ÓÚ6µÀΪ²»ºÏ¸ñ£¬ÏÖ´ÓA£¬BÁ½¸ö°à¼¶Ëæ»ú³éÈ¡5ÈË´ð¶ÔµÄÌâÊý½øÐзÖÎö£¬½á¹û¼Ç¼ÈçÏ£º
A°à55889
B°àm47n8
ÓÉÓÚ±í¸ñÊÜËð£¬Êý¾Ým£¬n¿´²»Ç壬ͳ¼ÆÈËÔ±Ö»¼ÇµÃm£¼n£¬ÇÒÔÚ³éÈ¡µÄÊý¾ÝÖУ¬A°àµÄƽ¾ùÊý±ÈB°àµÄƽ¾ùÊý¶à1µÀÌ⣬Á½°àÊý¾ÝµÄ·½²îÏàͬ
£¨1£©Çó±í¸ñÖÐmºÍnµÄÖµ£»
£¨2£©Èô´Ó³éÈ¡µÄB°à5ÈËÖÐÈÎÈ¡2ÈË£¬Çó2È˶¼ºÏ¸ñµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÆ½ÃæOAB¡¢OBC¡¢OACÏཻÓÚÒ»µãO£¬¡ÏAOB-¡ÏBOC=¡ÏCOA=60¡ã£¬ÇóÖ±ÏßOAÓëÆ½ÃæOBCËù³ÉµÄ½Ç£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÈôÀëÉ¢ÐÍËæ»ú±äÁ¿XµÄ·Ö²¼ÁÐΪ ÔòXµÄÊýѧÆÚÍûE£¨X£©=£¨¡¡¡¡£©
X01
P $\frac{a}{2}$$\frac{{a}^{2}}{2}$
A£®2B£®2»ò$\frac{1}{2}$C£®$\frac{1}{2}$D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®É̳¡¾ö¶¨¶ÔijµçÆ÷ÉÌÆ·²ÉÓá°Ìá¼Û³é½±¡±·½Ê½½øÐдÙÏú£¬¼´½«¸ÃÉÌÆ·µÄÊÛ¼ÛÌá¸ß100Ôª£¬µ«ÊǹºÂò´ËÉÌÆ·µÄ¹Ë¿Í¿ÉÒԳ齱£®¹æ¶¨¹ºÂò¸ÃÉÌÆ·µÄ¹Ë¿ÍÓÐ3´Î³é½±»ú»á£ºÈôÖÐÒ»´Î½±£¬Ôò»ñµÃÊý¶îΪmÔªµÄ½±½ð£»ÈôÖÐÁ½´Î½±£¬Ôò¹²»ñµÃÊý¶îΪ3mÔªµÄ½±½ð£»ÈôÖÐ3´Î½±£¬Ôò»ñµÃÊý¶îΪ6mµÄ½±½ð£®¼ÙÉè¹Ë¿Íÿ´ÎÖн±µÄ¸ÅÂʶ¼ÊÇ$\frac{1}{3}$£®Éè¹Ë¿ÍÈý´Î³é½±ºóËù»ñµÃµÄ½±½ð×ܶîÎªËæ»ú±äÁ¿¦Î£®
£¨¢ñ£©Çó¦ÎµÄ·Ö²¼ÁУ»
£¨¢ò£©ÈôҪʹ´ÙÏú·½°¸¶ÔÉ̳¡ÓÐÀû£¬ÊÔÎÊÉ̳¡×î¸ßÄܽ«½±½ðÊý¶îm¶¨Î»¶àÉÙÔª£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÈôÊäÈën=2015£¬ÔòÊä³öµÄsֵΪ$\frac{\sqrt{3}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸