| A. | [5,9] | B. | [5,$\frac{21}{4}$] | C. | [$\frac{21}{4}$,9] | D. | [6,10] |
分析 原函数变形得到$f(x)=(x+1)+\frac{9}{x+1}-1$,由基本不等式便可得出x=2时,f(x)≥5,这样便可判断f(x)在[0,3]上的单调性,从而得出f(x)在[0,3]上的最小、最大值,从而得出f(x)的值域.
解答 解:$f(x)=(x+1)+\frac{9}{x+1}-1≥5$,当且仅当$x+1=\frac{9}{x+1}$,即x=2时取“=”;
∴f(x)在[0,2]上单调递减,在[2,3]上单调递增;
又f(0)=9,f(3)=$\frac{21}{4}$;
∴f(x)在[0,3]上的最小值为5,最大值为9;
∴f(x)的值域为[5,9].
故选A.
点评 考查基本不等式在求函数最小值中的运用,应用基本不等式注意判断等号能否取到,函数值域的概念,根据函数单调性求函数值域的方法,要熟悉函数$y=x+\frac{1}{x}$的单调性.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{2}$+$\frac{4}{3}$ | B. | $\frac{π}{2}$+3 | C. | $\frac{π}{4}$+$\frac{4}{3}$ | D. | $\frac{π}{4}$+3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{34}$ | B. | 6 | C. | $4\sqrt{2}$ | D. | $3\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com