精英家教网 > 高中数学 > 题目详情
4.设f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}},x∈[-1,1)}\\{{x}^{2}-1,x∈[1,2]}\end{array}\right.$,则${∫}_{-1}^{2}$f(x)dx的值为(  )
A.$\frac{π}{2}$+$\frac{4}{3}$B.$\frac{π}{2}$+3C.$\frac{π}{4}$+$\frac{4}{3}$D.$\frac{π}{4}$+3

分析 根据定积分性质可得${∫}_{-1}^{2}$f(x)dx=${∫}_{-1}^{1}(\sqrt{1-{x}^{2}})dx$+${∫}_{1}^{2}({x}^{2}-1)dx$,然后根据定积分可得.

解答 解:根据定积分性质可得${∫}_{-1}^{2}$f(x)dx=${∫}_{-1}^{1}(\sqrt{1-{x}^{2}})dx$+${∫}_{1}^{2}({x}^{2}-1)dx$,
根据定积分的几何意义,${∫}_{-1}^{1}(\sqrt{1-{x}^{2}})dx$是以原点为圆心,以1为半径圆面积的$\frac{1}{2}$,
${∫}_{-1}^{1}(\sqrt{1-{x}^{2}})dx$=$\frac{π}{2}$,
∴${∫}_{-1}^{2}$f(x)dx=$\frac{π}{2}$+($\frac{1}{3}{x}^{3}-x$)${丨}_{1}^{2}$,
=$\frac{π}{2}$+$\frac{4}{3}$,
故答案选:A.

点评 本题求一个分段函数的定积分之值,着重考查了定积分的几何意义和积分计算公式等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.设函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-ax,若f(1)=f(3),则a=4;f(x)≤0的解集为[-4,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知复数z=$\frac{2i}{1+i}$,则z2等于(  )
A.1+iB.1-iC.2iD.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.射击比赛中,每人射击3次,至少击中2次才合格,已知某选手每次射击击中的概率为0.4,且各次射击是否击中相互独立,则该选手合格的概率为(  )
A.0.064B.0.352C..0544D.0.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知递增的等差数列{an}满足a1=2,a3=a${\;}_{2}^{2}$-17,则an=3n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.有两个等差数列{an}和{bn},若$\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{{b}_{1}+{b}_{2}+…{b}_{n}}$=$\frac{4n+6}{n+7}$(n∈N*),则$\frac{{a}_{3}+{a}_{6}+{a}_{9}+{a}_{14}}{{b}_{3}+{b}_{6}+{b}_{7}+{b}_{11}+{b}_{13}}$的值为(  )
A.$\frac{152}{75}$B.$\frac{14}{9}$C.$\frac{12}{5}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知不共线向量$\overrightarrow{a}$,$\overrightarrow{b}$,|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2,且向量$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-2$\overrightarrow{b}$垂直,求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=(x2+2ax)e-x(a∈R).
(Ⅰ)当$a=\frac{1}{2}$时,试证明f′(x)≤1;
(Ⅱ)讨论f(x)在区间(1,3)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=x+$\frac{9}{x+1}$(0≤x≤3),则f(x)的值域为(  )
A.[5,9]B.[5,$\frac{21}{4}$]C.[$\frac{21}{4}$,9]D.[6,10]

查看答案和解析>>

同步练习册答案