分析 (1)命题p:a=1时,由$\frac{x-1}{x-3}$<0,化为:(x-1)(x-3)<0,解出即可得出.命题q:实数x满足$\left\{\begin{array}{l}{{x}^{2}-x-6<0}\\{{x}^{2}+2x-8>0}\end{array}\right.$,化为:$\left\{\begin{array}{l}{(x-3)(x+2)<0}\\{(x+4)(x-2)>0}\end{array}\right.$,解得x范围.由p∧q为真,可得命题p与q都为真命题.
(2)由(1)可得:命题q:实数x满足:2<x<3.命题p:实数x满足$\frac{x-a}{x-3a}$<0,其中a>0,化为(x-a)(x-3a)<0,解得x范围.由¬p是¬q的充分不必要条件,可得q是p的充分不必要条件,即可得出.
解答 解:(1)命题p:a=1时,由$\frac{x-1}{x-3}$<0,化为:(x-1)(x-3)<0,解得1<x<3.
命题q:实数x满足$\left\{\begin{array}{l}{{x}^{2}-x-6<0}\\{{x}^{2}+2x-8>0}\end{array}\right.$,
化为:$\left\{\begin{array}{l}{(x-3)(x+2)<0}\\{(x+4)(x-2)>0}\end{array}\right.$,解得$\left\{\begin{array}{l}{-2<x<3}\\{x>2或x<-4}\end{array}\right.$,解得2<x<3.
∵p∧q为真,∴$\left\{\begin{array}{l}{1<x<3}\\{2<x<3}\end{array}\right.$,解得2<x<3.
∴实数x的取值范围是(2,3).
(2)由(1)可得:命题q:实数x满足:2<x<3.
命题p:实数x满足$\frac{x-a}{x-3a}$<0,其中a>0,化为(x-a)(x-3a)<0,解得a<x<3a.
∵¬p是¬q的充分不必要条件,
∴q是p的充分不必要条件,
∴$\left\{\begin{array}{l}{a≤2}\\{3≤3a}\end{array}\right.$,且等号不能同时成立,解得1≤a≤2.
∴实数a的取值范围是[1,2].
点评 本题考查了不等式的解法、复合命题真假的判定方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-3,1) | B. | (-1,3) | C. | (-3,-1) | D. | (1,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | cos$\frac{α}{2}$ | B. | -cos$\frac{α}{2}$ | C. | sin$\frac{α}{2}$ | D. | -sin$\frac{α}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com