精英家教网 > 高中数学 > 题目详情
2.等比数列{an}的前3项的和等于首项的7倍,则该等比数列的公比为-3或2.

分析 设该等比数列的公比为q,由题意可得:a1+a1q+${a}_{1}{q}^{2}$=7a1,化简解出即可.

解答 解:设该等比数列的公比为q,
由题意可得:a1+a1q+${a}_{1}{q}^{2}$=7a1
化为q2+q-6=0,
解得q=-3或2.
故答案为:-3或2.

点评 本题考查了等比数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.球面上有A、B、C、D四个点,若AB、AC、AD两两垂直,且AB=AC=AD=4,则该球的表面积为(  )
A.$\frac{80π}{3}$B.32πC.42πD.48π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.“依法纳税是每个公民应尽的义务”,国家征收个人工资、薪金所得税是分段计算的:总收入不超过800元的,免征个人工资、薪金所得税;超过800元部分需征税,设纳税所得额(所得额指月工资、薪金中应纳税的部分)为x,x=全月总收入-800(元),税率见下表:
级数全月应纳税所得额x税率
1不超过500元部分5%
2超过500元至2000元部分10%
3超过2000元至5000元部分15%
9超过100000元部分45%
(1)若应纳税额为f(x),试用分段函数表示1~3级纳税额f(x)的计算公式;
(2)某人2004年10月份工资总收入为4000元,试计算这个人10月份应纳个人所得税多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设命题P:函数f(x)=lg(ax2-4x+a)的定义域为R;命题q:函数g(x)=x2-ax-2在区间(1,3)上有唯一零点,
(1)若p为真命题,求实数a的取值范围;
(2)如果命题“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.$已知函数f(x)={log_{\frac{1}{2}}}\frac{2-ax}{x-1}({a是常数且a<2})$
(1)求f(x)的定义域;
(2)若f(x)在区间(2,4)上是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的前n项之和为Sn=pn2-2n+q(p,q是常数,n∈N*
(1)求q的值;
(2)若等差数列{an}的公差d=2,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数中既是奇函数又是增函数的是(  )
A.f(x)=x2B.f(x)=-x3C.f(x)=x|x|D.f(x)=x+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=$\sqrt{lo{g}_{\frac{2}{3}}(3x-1)}$的定义域为$(\frac{1}{3},\frac{2}{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知已知数列{an}的前n项的和为Sn=n2+n+3,则这个数列的通项公式为an=$\left\{\begin{array}{l}{5,n=1}\\{2n,n≥2}\end{array}\right.$.

查看答案和解析>>

同步练习册答案