| A. | 1 | B. | $-\sqrt{3}$ | C. | 0 | D. | $1-\sqrt{3}$ |
分析 函数$f(x)=2sin(\frac{π}{2}x+\frac{π}{3})$,可得f(n+4)=f(n).即可得出.
解答 解:函数$f(x)=2sin(\frac{π}{2}x+\frac{π}{3})$,∴f(1)=2$cos\frac{π}{3}$=1,f(2)=-$\sqrt{3}$,f(3)=-1,f(4)=$\sqrt{3}$,f(5)=1,….
∴f(n+4)=f(n).
则f(1)+f(2)+f(3)+…+f(2022)=[f(1)+f(2)+f(3)+f(4)]×505+f(1)+f(2)
=0+1-$\sqrt{3}$
=1-$\sqrt{3}$.
故选:D.
点评 本题考查了数列求和、三角函数的周期性、诱导公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 关于原点对称 | B. | 关于点(-$\frac{π}{16}$,0)对称 | ||
| C. | 关于y轴对称 | D. | 关于直线x=$-\frac{π}{16}$对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | q=r>p | B. | q=r<p | C. | p=r>q | D. | p=r<q |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p:存在x∈R,x2+2x+2≤0;非p:当x2+2x+2>0时,x∈R | |
| B. | p:每一个四边形的四个顶点共圆;非p:存在一个四边形的四个顶点不共圆 | |
| C. | p:有的三角形为正三角形;非p:所有的三角形都不是正三角形 | |
| D. | p:能被3整除的整数是奇数;非p:存在一个能被3整除的整数不是奇数 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com