分析 (Ⅰ)由四边形ABCD为棱形,∠ABC=60°,知△ABC是等边三角形,由E是BC的中点,知AE⊥BC,由BC∥AD,知AE⊥AD,由PA⊥平面ABCD,知PA⊥AE,由此能够证明AE⊥PD.
(Ⅱ)连结AC,则PA⊥AC,根据直角三角形的性质求出PC,PA,取AD中点G,则HG=$\frac{1}{2}$PA,FH=$\frac{1}{2}$CD,由HG⊥平面ABCD可得HG⊥CD,从而HG⊥FH,过A作AM⊥EG,则AM⊥平面EFHG,AM为等边三角形ACD的高的一半,代入体积公式即可求出棱锥的体积.
解答 (Ⅰ)证明:∵四边形ABCD为棱形,∠ABC=60°,
∴△ABC是等边三角形,
∵E是BC的中点,∴AE⊥BC,
又∵BC∥AD,∴AE⊥AD,
∵PA⊥平面ABCD,AE?平面ABCD,∴PA⊥AE,
∵PA?平面PAD,AD?平面PAD,且PA∩AD=A,![]()
∴AE⊥平面PAD,
又∵PD?平面PAD,∴AE⊥PD;
(Ⅱ)解:∵AB=1,∴AC=AD=BC=CD=1,∴AE=$\frac{\sqrt{3}}{2}$.
∵PA⊥平面ABCD,AC?平面ABCD,
∴PA⊥AC,
∵F是PC的中点,∴PC=2AF=$\sqrt{2}$,∴PA=$\sqrt{P{C}^{2}-A{C}^{2}}$=1.
取AD中点G,连结HG,EG,
则FH∥EG,FH=$\frac{1}{2}$CD=$\frac{1}{2}$,HG∥PA,HG=$\frac{1}{2}$PA=$\frac{1}{2}$.
∵PA⊥平面ABCD,
∴HG⊥平面ABCD,∴HG⊥EG,∴HG⊥FH,
∴S△EFH=$\frac{1}{2}$FH•HG=$\frac{1}{2}$×$\frac{1}{2}$×$\frac{1}{2}$=$\frac{1}{8}$.
过点A作AM⊥EG,垂足为M,则AM=$\frac{1}{2}$AE=$\frac{\sqrt{3}}{4}$.
又AM⊥HG,∴AM⊥平面EFHG,
∴VA-EFH=$\frac{1}{3}$S△EFH•AM=$\frac{1}{3}$×$\frac{1}{8}$×$\frac{\sqrt{3}}{4}$=$\frac{\sqrt{3}}{96}$.
点评 本题考查异面直线垂直的证明,考查异面直线所成的角的求法,解题时要认真审题,注意等价转化思想的合理运用,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 100 | B. | 99 | C. | 96 | D. | 101 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com