精英家教网 > 高中数学 > 题目详情
13.已知数列{an}的通项公式an=|3n-$\frac{k}{{3}^{n}}$|,若{an}为单调递增数列,则实数k的取值范围是(-27,27).

分析 {an}为单调递增数列,可得an<an+1,化简整理即可得出.

解答 解:∵{an}为单调递增数列,
∴an<an+1
∴$({3}^{n}-\frac{k}{{3}^{n}})^{2}$<$({3}^{n+1}-\frac{k}{{3}^{n+1}})^{2}$,
化为|k|<3n(3n+1),
上式对于n=1时也成立,
∴|k|<27,
解得-27<k<27,
∴实数k的取值范围是(-27,27).
故答案为:(-27,27).

点评 本题考查了数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知棱长为1的正方体ABCD-A1B1C1D1中,E、F分别是AB、AD的中点,点P,Q分别在棱A1B1、A1D1上,且A1P=A1Q=x(0<x<1),设平面MEF∩平面MPQ=l,则下列结论中错误的是(  )
A.l∥平面ABCD
B.l⊥AC
C.存在x0∈(0,1),使平面MEF与平面MPQ垂直
D.当x变化时,l是定直线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知抛物线C1:y2=2px(p>0)的焦点F与双曲线C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点重合,C1与C2相交于点 A,B.
(1)若A,F,B三点共线,求双曲线C2的离心率e;
(2)设点P为双曲线C2上异于A,B的任一点,直线AP、BP分别与x轴交于点M(m,0)和N(n,0),问:mn是否为定值?若为定值,请求出此定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(Ⅰ)已知函数f(x)=|x+3|,g(x)=m-2|x-11|,若2f(x)≥g(x+4)恒成立,求实数m的取值范围.
(Ⅱ)已知实数x,y,z满足2x2+3y2+6z2=a(a>0)且x+y+z的最大值是1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知实数a、b、c满足$\left\{\begin{array}{l}{a>b>c}\\{a+b+c=1}\\{{a}^{2}+{b}^{2}+{c}^{2}=1}\end{array}\right.$,试求a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知F1、F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,椭圆C过点(-$\sqrt{3}$,1)且与抛物线y2=-8x有一个公共的焦点,直线l过右焦点F2且与椭圆交于A、B两点
(1)求椭圆C方程;
(2)P为直线x=3上的一点,若△ABP为等边三角形,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某学校举行知识竞赛,第一轮选拔共设有A,B,C,D四个问题,规则如下:①每位参加者计分器的初始分均为10分,答对问题A,B,C,D分别加1分,2分,3分,6分,答错任意题减2分;
②每答一题,计分器显示累计分数,当累积分数小于8分时,答题结束,淘汰出局;当累积分数大于或等于14分时,答题结束,进入下一轮;答完四题累计分数不足14分时,答题结束淘汰出局;
③每位参加者按A,B,C,D顺序作答,直至答题结束.
假设甲同学对问题A,B,C,D回答正确的概率依次为$\frac{3}{4}$,$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,且各题回答正确与否相互之间没有影响.(Ⅰ)求甲同学能进入下一轮的概率;
(Ⅱ)用ξ表示甲同学本轮答题的个数,求ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥P-ABCD中,AD∥BC,AD⊥DC,AD=2BC=2CD=2,侧面APD为等腰直角
三角形,PA⊥PD,平面PAD⊥底面ABCD,E为侧棱PC上不同于端点的一点.
(1)证明:PA⊥DE;
(2)试确定点E的位置,使二面角E-BD-C的余弦值为$\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.我们把中间位数上的数字最大面两边依次减小的多位数成为“凸数”.如132、341等,那么由1、2、3、4、5可以组成无理重复数字的三位凸数的个数是20(用数字作答)

查看答案和解析>>

同步练习册答案