精英家教网 > 高中数学 > 题目详情
6.在棱长为2的正方体ABCD-A1B1C1D1中,E是棱BB1上的动点,F是棱CD的中点,则四面体A1D1EF体积的最大值是$\frac{4}{3}$.

分析 由BB1与平面A1D1F相交可知当E与B1重合时,四面体的体积最大.

解答 解:当E与B1重合时,E到平面A1D1F的距离最大,
即四面体A1D1EF体积取得最大值,
此时V${\;}_{{A}_{1}-{D}_{1}EF}$=V${\;}_{F-{A}_{1}{B}_{1}{D}_{1}}$=$\frac{1}{3}{S}_{△{A}_{1}{B}_{1}{D}_{1}}•A{A}_{1}$=$\frac{1}{3}×\frac{1}{2}×2×2×2$=$\frac{4}{3}$.
故答案为$\frac{4}{3}$.

点评 本题考查了棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年河北正定中学高二上月考一数学(文)试卷(解析版) 题型:选择题

运行下面的程序,若,则输出的等于( )

A.9 B.7 C.13 D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知过点A(1,$\frac{3}{2}$)的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,且AF所在直线的斜率为$\frac{3}{4}$.
(1)求椭圆的C的方程;
(2)若存在直线l与椭圆交于两点M、N(均异于点A),使得∠MAN=90°,求证:直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.甲、乙等5名选手被随即分配到A、B、C、D四个不同的项目中,每个项目至少有一人,则甲乙两人同时参加A项目的概率为$\frac{1}{40}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=2cos2x+$\sqrt{3}$sin2x
(1)求函数f(x)的最小正周期和单调递增区间;
(2)当x∈[0,$\frac{π}{3}}$]时,求f(x)的最大值及x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线$l:ρsin(θ-\frac{π}{4})=4$和圆$C:ρ=2k•cos(θ+\frac{π}{4})(k≠0)$,直线上的点到圆C上的点的最小距离等于2
(1)求直线L的直角坐标方程;
(2)求k的值.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:解答题

已知函数是定义在上的奇函数,且当时有.

①求的解析式;

②求的值域;

③若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和Sn=n2+2n,正项等比数列{bn}满足:b1=a1-1,且b4=2b2+b3
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)若数列{cn}满足:cn=$\frac{{a}_{n}}{{b}_{n}}$,其前n项和为Tn,求Tn的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦点为F(1,0),且点$P(1,\frac{3}{2})$在椭圆C上,O为坐标原点.
(1)求椭圆C的标准方程;
(2)过椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{{{b^2}-\frac{5}{3}}}$=1上异于其顶点的任一点P,作圆O:x2+y2=$\frac{4}{3}$的两条切线,切点分别为M,N(M,N不在坐标轴上),若直线MN在x轴、y轴上的截距分别为m、n,证明:$\frac{1}{{3{m^2}}}+\frac{1}{n^2}$为定值.

查看答案和解析>>

同步练习册答案