分析 (Ⅰ)利用已知条件,结合C=45°,通过正弦定理即可求b;
(Ⅱ)利用b=2$\sqrt{7}$,直接利用余弦定理求解a即可.
解答 解:(Ⅰ)∵在△ABC中,已知B=60°,c=4,C=45°,
∴$\frac{c}{sinC}=\frac{b}{sinB}$,
∴b=$\frac{csinB}{sinC}$=$\frac{4×\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}}$=2$\sqrt{6}$.
(Ⅱ)若b=2$\sqrt{7}$,B=60°,c=4,
可得:b2=a2+c2-2accosB,
即:28=a2+16-8a×$\frac{1}{2}$,即:a2-4a-12=0,
解得a=-6(舍去)或a=2.
点评 本题考查正弦定理以及余弦定理解三角形,属基础题.
科目:高中数学 来源: 题型:选择题
| A. | {-1,1,6} | B. | {-1,1} | C. | {-1,0,1,2,4,6} | D. | {0,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<-1或a>0 | B. | -1<a<0 | C. | a<0或a>1 | D. | a<-1或a>1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com